Section IV.23. Factorizations of Polynomials over a Field

Note. Our experience with classical algebra tells us that finding the zeros of a polynomial is equivalent to factoring the polynomial. We find that the same holds in F[x] when F is a field (as we see in the "Factor Theorem"). In this section, we consider factoring polynomials and conditions under which a polynomial cannot be factored (when it is "irreducible"; you see this in Calculus 2 [MATH 1920] when considering partial fraction decompositions , as in my online notes on Section 8.4 Integration of Rational Functions by Partial Fractions).

Theorem 23.1. Division Algorithm for F[x].

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ and $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_2 x^2 + b_1 x + b_0$ be in F[x], with a_n and b_m both nonzero and m > 0. Then there are unique polynomials q(x) and r(x) in F[x] such that f(x) = g(x)q(x) + r(x), where either r(x) = 0 or the degree of r(x) is less than the degree of g(x).

Note. We illustrate the Division Algorithm for F[x] on the next page.

Exercise 23.4. For $f(x) = x^4 + 5x^3 + 8x^2$ and $g(x) = 5x^2 + 10x + 2$ in $\mathbb{Z}_{11}[x]$, find q(x) and r(x) such that f(x) = g(x)q(x) + r(x).

Solution. We can perform simple long division (but in \mathbb{Z}_{11}):

					$9x^2$	+	5x	+	10
$5x^2 + 10x + 2\right)$	x^4	+	$5x^3$	+	$8x^2$				
	x^4	+	$2x^3$	+	$7x^2$				
			$3x^3$	+	x^2				
			$3x^3$	+	$6x^2$	+	10x		
					$6x^2$	+	x		
					$6x^2$	+	x	+	9
									2

So $q(x) = 9x^2 + 5x + 10$ and r(x) = 2.

Corollary 23.3. Factor Theorem.

An element $a \in F$ (for a field F) is a zero of $f(x) \in F[x]$ if and only if x - a is a factor of f(x) in F[x].

Exercise 23.10. The polynomial $x^3 + 2x^2 + 2x + 1$ can be factored into linear factors in $\mathbb{Z}_7[x]$. Find the factorization.

Solution. This is equivalent to finding the zeros of the polynomial by Corollary 23.3. So we check each element of \mathbb{Z}_7 as follows:

x	$x^3 + 2x^2 + 2x + 1$
0	1
1	1 + 2 + 2 + 1 = 6
2	$8+8+4+1 \equiv 0$
3	$27 + 18 + 6 + 1 = 62 \equiv 6$
$4 \equiv -3$	$-27 + 18 - 6 + 1 = -14 \equiv 0$
$5 \equiv -2$	$-8 + 8 - 4 + 1 = -3 \equiv 4$
$6 \equiv -1$	-1 + 2 - 2 + 1 = 0

(Notice the use of "negatives.") So the zeros are 2, 4, and 6 and so in \mathbb{Z}_7 , $x^3 + 2x^2 + 2x + 1 = (x-2)(x-4)(x-6) = (x+5)(x+3)(x+1)$.

Corollary 23.5. A nonzero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in a field F.

Corollary 23.6. If G is a finite subgroup of the multiplicative group $\langle F^*, \cdot \rangle$ of a field F, then G is cyclic. In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.

Definition 23.7. A nonconstant polynomial $f(x) \in F[x]$ (*F* a field) is *irreducible* over *F* or is an *irreducible polynomial in* F[x] if f(x) cannot be expressed as a product g(x)h(x) of two polynomials g(x) and h(x) in F[x] both of lower degree than the degree of f(x). If $f(x) \in F[x]$ is a nonconstant polynomial that is not irreducible over *F*, then f(x) is *reducible over F*. **Example 23.8.** Since $x^2 - 2$ has no zeros in $\mathbb{Q}[x]$, then $x^2 - 2$ is irreducible over \mathbb{Q} . However, $x^2 - 2$ is reducible over \mathbb{R} since $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$ in $\mathbb{R}[x]$.

Example. Since $x^2 + 1$ has no zeros in $\mathbb{R}[x]$, then $x^2 + 1$ is irreducible over \mathbb{R} . However, $x^2 + 1$ is reducible over \mathbb{C} since $x^2 + 1 = (x - i)(x + i)$ in $\mathbb{C}[x]$.

Theorem 23.10. Let $f(x) \in F[x]$, and let f(x) be of degree 2 or 3. Then f(x) is reducible over F if and only if it has a zero in F.

Note. A polynomial f(x) may be reducible and still not have a zero. For example, $x^4 + 2x^2 + 1 = (x^2 + 1)(x^2 + 1)$ in $\mathbb{R}[x]$, but $x^4 + 2x^2 + 1$ has no zero in \mathbb{R} .

Theorem 23.11. If $f(x) \in \mathbb{Z}[x]$, then f(x) factors into a product of two polynomials of lower degrees r and s in $\mathbb{Q}[x]$ if and only if it has such a factorization with polynomials of the same degrees r and s in $\mathbb{Z}[x]$. (The text omits the proof of this.)

Corollary 23.12. If $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_2x^2 + a_1x + a_0$ is in $\mathbb{Z}[x]$ with $a_0 \neq 0$ and if f(x) has a zero in \mathbb{Q} , then it has a zero m in \mathbb{Z} , and m must divide a_0 .

Exercise 23.16. Demonstrate that $x^3 + 3x^2 - 8$ is irreducible over \mathbb{Q} .

Solution. By Corollary 23.12, if $f(x) = x^3 + 3x^2 - 8$ has a zero in \mathbb{Q} , then it has a zero $m \in \mathbb{Z}$ which divides -8. So we test the divisors of -8 to see if they are zeros of f(x):

x	f(x)
-8	-328
-4	-24
-2	-4
-1	-6
1	-4
2	12
4	104
8	696

Since there is no zero in \mathbb{Z} , there is no zero in \mathbb{Q} . So by the Factor Theorem there is no linear factor and by Theorem 23.10 we have that f(x) is irreducible over \mathbb{Q} .

Theorem 23.15. Eisenstein Criterion.

Let $p \in \mathbb{Z}$ be a prime. Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{Z}[x]$, and $a_n \not\equiv 0 \pmod{p}$, but $a_i \equiv 0 \pmod{p}$ for all i < n, with $a_0 \not\equiv 0 \pmod{p^2}$. Then f(x) is irreducible over \mathbb{Q} . **Exercise 23.19.** Is $8x^3 + 6x^2 - 9x + 24$ reducible over \mathbb{Q} ?

Solution. With p = 3, we have $a_0 \equiv a_1 \equiv a_2 \equiv 0 \pmod{p}$ since $24 \equiv -9 \equiv 6 \equiv 0 \pmod{3}$, $a_n = a_3 \not\equiv 0 \pmod{3}$ since $a_3 = 8 \equiv 2 \pmod{3}$, and $a_0 \not\equiv 0 \pmod{p^2}$ since $a_0 = 24 \equiv 6 \pmod{9}$. So, by the Eisenstein Criterion, $8x^3 + 6x^2 - 9x + 24$ is irreducible over \mathbb{Q} .

Corollary 23.17. The polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x^2 + x + 1$$

is irreducible over \mathbb{Q} for any prime p.

Definition. The polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x^2 + x + 1$$

for prime p is the *pth cyclotomic polynomial*.

Note. The zeros of Φ_p are the *p*th roots of unity in \mathbb{C} , excluding 1.

Theorem 23.18. Let p(x) be an irreducible polynomial in F[x]. If p(x) divides r(x)s(x) for $r(x)s(x) \in F[x]$, then either p(x) divides r(x) or p(x) divides s(x).

Note. The proof of Theorem 23.18 is given in Section 27 as the proof of Theorem 27.27. The strength of Theorem 23.18 is given in Theorem 23.20 which gives a uniqueness result for the factorization of polynomials.

Corollary 23.19. If p(x) is irreducible in F[x] and p(x) divides the product $r_1(x)r_2(x)\cdots r_n(x)$ for $r_i(x) \in F[x]$, then p(x) divides $r_i(x)$ for at least one *i*.

Note. The proof of Corollary 23.19 follows from Theorem 23.18 by Mathematical Induction.

Theorem 23.20. If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in F[x] into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, nonzero constant) factors in F.

Example. In Exercise 23.10 we saw that in \mathbb{Z}_7 ,

$$x^{3} + 2x^{2} + 2x + 1 = (x+5)(x+3)(x+1).$$

Since $2^3 \equiv 1 \pmod{7}$, we also have

$$x^{3} + 2x^{2} + 2x + 1 = (2x + 3)(2x + 6)(2x + 2).$$

Revised: 7/15/2023