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Section IV.23. Factorizations of Polynomials over a Field

Note. Our experience with classical algebra tells us that finding the zeros of a

polynomial is equivalent to factoring the polynomial. We find that the same holds

in F [x] when F is a field (as we see in the “Factor Theorem”). In this section, we

consider factoring polynomials and conditions under which a polynomial cannot be

factored (when it is “irreducible”; you see this in Calculus 2 [MATH 1920] when

considering partial fraction decompositions , as in my online notes on Section 8.4

Integration of Rational Functions by Partial Fractions).

Theorem 23.1. Division Algorithm for F [x].

Let f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x + a0 and g(x) = bmxm + bm−1x

m−1 +

· · ·+b2x
2+b1x+b0 be in F [x], with an and bm both nonzero and m > 0. Then there

are unique polynomials q(x) and r(x) in F [x] such that f(x) = g(x)q(x) + r(x),

where either r(x) = 0 or the degree of r(x) is less than the degree of g(x).

Note. We illustrate the Division Algorithm for F [x] on the next page.

https://faculty.etsu.edu/gardnerr/1920/12/c8s4.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c8s4.pdf


IV.23 Factorizations of Polynomials 2

Exercise 23.4. For f(x) = x4 +5x3 +8x2 and g(x) = 5x2 +10x+2 in Z11[x], find

q(x) and r(x) such that f(x) = g(x)q(x) + r(x).

Solution. We can perform simple long division (but in Z11):

9x2 + 5x + 10

5x2 + 10x + 2) x4 + 5x3 + 8x2

x4 + 2x3 + 7x2

3x3 + x2

3x3 + 6x2 + 10x

6x2 + x

6x2 + x + 9

2

So q(x) = 9x2 + 5x + 10 and r(x) = 2.

Corollary 23.3. Factor Theorem.

An element a ∈ F (for a field F ) is a zero of f(x) ∈ F [x] if and only if x − a is a

factor of f(x) in F [x].

Exercise 23.10. The polynomial x3 + 2x2 + 2x + 1 can be factored into linear

factors in Z7[x]. Find the factorization.

Solution. This is equivalent to finding the zeros of the polynomial by Corollary

23.3. So we check each element of Z7 as follows:
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x x3 + 2x2 + 2x + 1

0 1

1 1 + 2 + 2 + 1 = 6

2 8 + 8 + 4 + 1 ≡ 0

3 27 + 18 + 6 + 1 = 62 ≡ 6

4 ≡ −3 −27 + 18− 6 + 1 = −14 ≡ 0

5 ≡ −2 −8 + 8− 4 + 1 = −3 ≡ 4

6 ≡ −1 −1 + 2− 2 + 1 = 0

(Notice the use of “negatives.”) So the zeros are 2, 4, and 6 and so in Z7, x3 +

2x2 + 2x + 1 = (x− 2)(x− 4)(x− 6) = (x + 5)(x + 3)(x + 1).

Corollary 23.5. A nonzero polynomial f(x) ∈ F [x] of degree n can have at most

n zeros in a field F .

Corollary 23.6. If G is a finite subgroup of the multiplicative group 〈F ∗, ·〉 of

a field F , then G is cyclic. In particular, the multiplicative group of all nonzero

elements of a finite field is cyclic.

Definition 23.7. A nonconstant polynomial f(x) ∈ F [x] (F a field) is irreducible

over F or is an irreducible polynomial in F [x] if f(x) cannot be expressed as a

product g(x)h(x) of two polynomials g(x) and h(x) in F [x] both of lower degree

than the degree of f(x). If f(x) ∈ F [x] is a nonconstant polynomial that is not

irreducible over F , then f(x) is reducible over F .
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Example 23.8. Since x2 − 2 has no zeros in Q[x], then x2 − 2 is irreducible over

Q. However, x2 − 2 is reducible over R since x2 − 2 = (x−
√

2)(x +
√

2) in R[x].

Example. Since x2 + 1 has no zeros in R[x], then x2 + 1 is irreducible over R.

However, x2 + 1 is reducible over C since x2 + 1 = (x− i)(x + i) in C[x].

Theorem 23.10. Let f(x) ∈ F [x], and let f(x) be of degree 2 or 3. Then f(x) is

reducible over F if and only if it has a zero in F .

Note. A polynomial f(x) may be reducible and still not have a zero. For example,

x4 + 2x2 + 1 = (x2 + 1)(x2 + 1) in R[x], but x4 + 2x2 + 1 has no zero in R.

Theorem 23.11. If f(x) ∈ Z[x], then f(x) factors into a product of two polyno-

mials of lower degrees r and s in Q[x] if and only if it has such a factorization with

polynomials of the same degrees r and s in Z[x]. (The text omits the proof of this.)

Corollary 23.12. If f(x) = xn + an−1x
n−1 + · · ·+ a2x

2 + a1x + a0 is in Z[x] with

a0 6= 0 and if f(x) has a zero in Q, then it has a zero m in Z, and m must divide

a0.
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Exercise 23.16. Demonstrate that x3 + 3x2 − 8 is irreducible over Q.

Solution. By Corollary 23.12, if f(x) = x3 +3x2− 8 has a zero in Q, then it has a

zero m ∈ Z which divides −8. So we test the divisors of −8 to see if they are zeros

of f(x):

x f(x)

−8 −328

−4 −24

−2 −4

−1 −6

1 −4

2 12

4 104

8 696

Since there is no zero in Z, there is no zero in Q. So by the Factor Theorem there

is no linear factor and by Theorem 23.10 we have that f(x) is irreducible over Q.

Theorem 23.15. Eisenstein Criterion.

Let p ∈ Z be a prime. Suppose f(x) = anx
n+an−1x

n−1+· · ·+a2x
2+a1x+a0 ∈ Z[x],

and an 6≡ 0 (mod p), but ai ≡ 0 (mod p) for all i < n, with a0 6≡ 0 (mod p2). Then

f(x) is irreducible over Q.
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Exercise 23.19. Is 8x3 + 6x2 − 9x + 24 reducible over Q?

Solution. With p = 3, we have a0 ≡ a1 ≡ a2 ≡ 0 (mod p) since 24 ≡ −9 ≡ 6 ≡ 0

(mod 3), an = a3 6≡ 0 (mod 3) since a3 = 8 ≡ 2 (mod 3), and a0 6≡ 0 (mod p2)

since a0 = 24 ≡ 6 (mod 9). So, by the Eisenstein Criterion, 8x3 + 6x2 − 9x + 24 is

irreducible over Q.

Corollary 23.17. The polynomial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x2 + x + 1

is irreducible over Q for any prime p.

Definition. The polynomial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x2 + x + 1

for prime p is the pth cyclotomic polynomial.

Note. The zeros of Φp are the pth roots of unity in C, excluding 1.

Theorem 23.18. Let p(x) be an irreducible polynomial in F [x]. If p(x) divides

r(x)s(x) for r(x)s(x) ∈ F [x], then either p(x) divides r(x) or p(x) divides s(x).

Note. The proof of Theorem 23.18 is given in Section 27 as the proof of Theorem

27.27. The strength of Theorem 23.18 is given in Theorem 23.20 which gives a

uniqueness result for the factorization of polynomials.
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Corollary 23.19. If p(x) is irreducible in F [x] and p(x) divides the product

r1(x)r2(x) · · · rn(x) for ri(x) ∈ F [x], then p(x) divides ri(x) for at least one i.

Note. The proof of Corollary 23.19 follows from Theorem 23.18 by Mathematical

Induction.

Theorem 23.20. If F is a field, then every nonconstant polynomial f(x) ∈ F [x]

can be factored in F [x] into a product of irreducible polynomials, the irreducible

polynomials being unique except for order and for unit (that is, nonzero constant)

factors in F .

Example. In Exercise 23.10 we saw that in Z7,

x3 + 2x2 + 2x + 1 = (x + 5)(x + 3)(x + 1).

Since 23 ≡ 1 (mod 7), we also have

x3 + 2x2 + 2x + 1 = (2x + 3)(2x + 6)(2x + 2).
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