## Section IV.23. Factorizations of Polynomials over a Field

Note. Our experience with classical algebra tells us that finding the zeros of a polynomial is equivalent to factoring the polynomial. We find that the same holds in $F[x]$ when $F$ is a field (as we see in the "Factor Theorem"). In this section, we consider factoring polynomials and conditions under which a polynomial cannot be factored (when it is "irreducible"; you see this in Calculus 2 [MATH 1920] when considering partial fraction decompositions, as in my online notes on Section 8.4 Integration of Rational Functions by Partial Fractions).

Theorem 23.1. Division Algorithm for $F[x]$.
Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+$ $\cdots+b_{2} x^{2}+b_{1} x+b_{0}$ be in $F[x]$, with $a_{n}$ and $b_{m}$ both nonzero and $m>0$. Then there are unique polynomials $q(x)$ and $r(x)$ in $F[x]$ such that $f(x)=g(x) q(x)+r(x)$, where either $r(x)=0$ or the degree of $r(x)$ is less than the degree of $g(x)$.

Note. We illustrate the Division Algorithm for $F[x]$ on the next page.

Exercise 23.4. For $f(x)=x^{4}+5 x^{3}+8 x^{2}$ and $g(x)=5 x^{2}+10 x+2$ in $\mathbb{Z}_{11}[x]$, find $q(x)$ and $r(x)$ such that $f(x)=g(x) q(x)+r(x)$.

Solution. We can perform simple long division (but in $\mathbb{Z}_{11}$ ):

$$
\begin{aligned}
& 9 x^{2}+5 x+10 \\
& 5 x ^ { 2 } + 1 0 x + 2 \longdiv { x ^ { 4 } + 5 x ^ { 3 } + 8 x ^ { 2 } } \\
& x^{4}+2 x^{3}+7 x^{2} \\
& 3 x^{3}+x^{2} \\
& 3 x^{3}+6 x^{2}+10 x \\
& 6 x^{2}+x \\
& 6 x^{2}+x+9
\end{aligned}
$$

So $q(x)=9 x^{2}+5 x+10$ and $r(x)=2$.

## Corollary 23.3. Factor Theorem.

An element $a \in F$ (for a field $F$ ) is a zero of $f(x) \in F[x]$ if and only if $x-a$ is a factor of $f(x)$ in $F[x]$.

Exercise 23.10. The polynomial $x^{3}+2 x^{2}+2 x+1$ can be factored into linear factors in $\mathbb{Z}_{7}[x]$. Find the factorization.

Solution. This is equivalent to finding the zeros of the polynomial by Corollary 23.3. So we check each element of $\mathbb{Z}_{7}$ as follows:

| $x$ | $x^{3}+2 x^{2}+2 x+1$ |
| :---: | :---: |
| 0 | 1 |
| 1 | $1+2+2+1=6$ |
| 2 | $8+8+4+1 \equiv 0$ |
| 3 | $27+18+6+1=62 \equiv 6$ |
| $4 \equiv-3$ | $-27+18-6+1=-14 \equiv 0$ |
| $5 \equiv-2$ | $-8+8-4+1=-3 \equiv 4$ |
| $6 \equiv-1$ | $-1+2-2+1=0$ |

(Notice the use of "negatives.") So the zeros are 2,4 , and 6 and so in $\mathbb{Z}_{7}, x^{3}+$ $2 x^{2}+2 x+1=(x-2)(x-4)(x-6)=(x+5)(x+3)(x+1)$.

Corollary 23.5. A nonzero polynomial $f(x) \in F[x]$ of degree $n$ can have at most $n$ zeros in a field $F$.

Corollary 23.6. If $G$ is a finite subgroup of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$ of a field $F$, then $G$ is cyclic. In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.

Definition 23.7. A nonconstant polynomial $f(x) \in F[x]$ ( $F$ a field) is irreducible over $F$ or is an irreducible polynomial in $F[x]$ if $f(x)$ cannot be expressed as a product $g(x) h(x)$ of two polynomials $g(x)$ and $h(x)$ in $F[x]$ both of lower degree than the degree of $f(x)$. If $f(x) \in F[x]$ is a nonconstant polynomial that is not irreducible over $F$, then $f(x)$ is reducible over $F$.

Example 23.8. Since $x^{2}-2$ has no zeros in $\mathbb{Q}[x]$, then $x^{2}-2$ is irreducible over $\mathbb{Q}$. However, $x^{2}-2$ is reducible over $\mathbb{R}$ since $x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})$ in $\mathbb{R}[x]$.

Example. Since $x^{2}+1$ has no zeros in $\mathbb{R}[x]$, then $x^{2}+1$ is irreducible over $\mathbb{R}$. However, $x^{2}+1$ is reducible over $\mathbb{C}$ since $x^{2}+1=(x-i)(x+i)$ in $\mathbb{C}[x]$.

Theorem 23.10. Let $f(x) \in F[x]$, and let $f(x)$ be of degree 2 or 3 . Then $f(x)$ is reducible over $F$ if and only if it has a zero in $F$.

Note. A polynomial $f(x)$ may be reducible and still not have a zero. For example, $x^{4}+2 x^{2}+1=\left(x^{2}+1\right)\left(x^{2}+1\right)$ in $\mathbb{R}[x]$, but $x^{4}+2 x^{2}+1$ has no zero in $\mathbb{R}$.

Theorem 23.11. If $f(x) \in \mathbb{Z}[x]$, then $f(x)$ factors into a product of two polynomials of lower degrees $r$ and $s$ in $\mathbb{Q}[x]$ if and only if it has such a factorization with polynomials of the same degrees $r$ and $s$ in $\mathbb{Z}[x]$. (The text omits the proof of this.)

Corollary 23.12. If $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ is in $\mathbb{Z}[x]$ with $a_{0} \neq 0$ and if $f(x)$ has a zero in $\mathbb{Q}$, then it has a zero $m$ in $\mathbb{Z}$, and $m$ must divide $a_{0}$.

Exercise 23.16. Demonstrate that $x^{3}+3 x^{2}-8$ is irreducible over $\mathbb{Q}$.
Solution. By Corollary 23.12, if $f(x)=x^{3}+3 x^{2}-8$ has a zero in $\mathbb{Q}$, then it has a zero $m \in \mathbb{Z}$ which divides -8 . So we test the divisors of -8 to see if they are zeros of $f(x)$ :

| $x$ | $f(x)$ |
| :---: | :---: |
| -8 | -328 |
| -4 | -24 |
| -2 | -4 |
| -1 | -6 |
| 1 | -4 |
| 2 | 12 |
| 4 | 104 |
| 8 | 696 |

Since there is no zero in $\mathbb{Z}$, there is no zero in $\mathbb{Q}$. So by the Factor Theorem there is no linear factor and by Theorem 23.10 we have that $f(x)$ is irreducible over $\mathbb{Q}$.

## Theorem 23.15. Eisenstein Criterion.

Let $p \in \mathbb{Z}$ be a prime. Suppose $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$, and $a_{n} \not \equiv 0(\bmod p)$, but $a_{i} \equiv 0(\bmod p)$ for all $i<n$, with $a_{0} \not \equiv 0\left(\bmod p^{2}\right)$. Then $f(x)$ is irreducible over $\mathbb{Q}$.

Exercise 23.19. Is $8 x^{3}+6 x^{2}-9 x+24$ reducible over $\mathbb{Q}$ ?
Solution. With $p=3$, we have $a_{0} \equiv a_{1} \equiv a_{2} \equiv 0(\bmod p)$ since $24 \equiv-9 \equiv 6 \equiv 0$ $(\bmod 3), a_{n}=a_{3} \not \equiv 0(\bmod 3)$ since $a_{3}=8 \equiv 2(\bmod 3)$, and $a_{0} \not \equiv 0\left(\bmod p^{2}\right)$ since $a_{0}=24 \equiv 6(\bmod 9)$. So, by the Eisenstein Criterion, $8 x^{3}+6 x^{2}-9 x+24$ is irreducible over $\mathbb{Q}$.

Corollary 23.17. The polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x^{2}+x+1
$$

is irreducible over $\mathbb{Q}$ for any prime $p$.

Definition. The polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x^{2}+x+1
$$

for prime $p$ is the $p$ th cyclotomic polynomial.

Note. The zeros of $\Phi_{p}$ are the $p$ th roots of unity in $\mathbb{C}$, excluding 1 .

Theorem 23.18. Let $p(x)$ be an irreducible polynomial in $F[x]$. If $p(x)$ divides $r(x) s(x)$ for $r(x) s(x) \in F[x]$, then either $p(x)$ divides $r(x)$ or $p(x)$ divides $s(x)$.

Note. The proof of Theorem 23.18 is given in Section 27 as the proof of Theorem 27.27. The strength of Theorem 23.18 is given in Theorem 23.20 which gives a uniqueness result for the factorization of polynomials.

Corollary 23.19. If $p(x)$ is irreducible in $F[x]$ and $p(x)$ divides the product $r_{1}(x) r_{2}(x) \cdots r_{n}(x)$ for $r_{i}(x) \in F[x]$, then $p(x)$ divides $r_{i}(x)$ for at least one $i$.

Note. The proof of Corollary 23.19 follows from Theorem 23.18 by Mathematical Induction.

Theorem 23.20. If $F$ is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, nonzero constant) factors in $F$.

Example. In Exercise 23.10 we saw that in $\mathbb{Z}_{7}$,

$$
x^{3}+2 x^{2}+2 x+1=(x+5)(x+3)(x+1) .
$$

Since $2^{3} \equiv 1(\bmod 7)$, we also have

$$
x^{3}+2 x^{2}+2 x+1=(2 x+3)(2 x+6)(2 x+2) .
$$

