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Part IX. Factorization

Section IX.45. Unique Factorization Domains

Note. In this section we return to integral domains and concern ourselves with

factoring (with respect to the multiplication binary operation). We define irre-

ducible and prime. Many of the results are motivated by the behavior of integral

domain 〈Z, +, ·〉. We show that “every PID is a UFD”(!) and give a proof of the

Fundamental Theorem of Arithmetic in Z.

Note. Recall that an integral domain is a commutative ring (that is, in 〈R, +, ·〉,

multiplication · is commutative) with unity 1 6= 0 and containing no divisors of

0 (so a · b = 0 implies that either a = 0 or b = 0). 〈Z, +, ·〉 is an example of an

integral domain.

Definition 45.1. Let R be a commutative ring with unity and let a, b ∈ R. If

there exists c ∈ R such that b = a, then a divides b (or equivalently, a is a factor

of b), denoted a | b. If for given a and b, no such c exists then we say a does not

divide b, denoted a - b.

Definition 45.2. An element u of a commutative ring with unity is a unit if u

divides 1; that is, if u has a multiplicative inverse in the ring. Two elements a and

b in a ring are associates if a = bu where u is a unit in the ring.
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Example 45.3. In ring 〈Z, +, ·〉, the only units are 1 and −1. Distinct a, b ∈ Z

are associates if and only if a = −b.

Definition 45.4. A nonzero element p that is not a unit in an integral domain D

is an irreducible of D if in every factorization p = ab in D implies that either a or

b is a unit.

Note. If p and q are associates in an integral domain then p is irreducible if an

only if q is irreducible.

Note. As with the Fundamental Theorem of Arithmetic in N, we are interested in

uniquely factoring elements of an integral domain into irreducibles. Since N is not

a ring (it has no additive inverses), we need to extend the Fundamental Theorem

of Arithmetic to Z. However, uniqueness is affected by the existence of negative

primes (which are, of course, associates of positive primes in Z). This idea is the

inspiration for the next definition.
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Definition 45.5. An integral domain D is a unique factorization domain (or

“UFD”) is the following hold:

1. Every element of D that is neither 0 nor a unit can be factored into a product

of a finite number of irreducibles.

2. If p1, p2, . . . , pr and q1, q2, . . . , qr are two factorizations of the same element of

D into irreducibles, then r = s and the qj can be renumbered so that pi and

gi are associates for each i.

Note. We have met the idea of unique factorization in Section 23. Recall:

Theorem 23.20. If F is a field, then every nonconstant polynomial in F [x] can

be factored in F [x] into a product of irreducible polynomials being unique except

for order and for unit (that is, nonzero constant) factors in F .

In the words used here, if F is a field then F [x] is a UFD.

Note. Recall that an additive subgroup N of a ring R which satisfies aN ⊆ N and

Nb ⊆ N for all a, b ∈ R is an ideal. (If N is an ideal of ring R, then we can make

the factor ring or quotient ring R/N .) An ideal N of ring R is a principal ideal if

for some a ∈ R we have N = {ra | r ∈ R} = 〈a〉.

Definition 45.7. An integral domain D is a principal ideal domain (or “PID”) if

every ideal in D is a principal ideal.
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Note. In integral domain D = Z, every ideal is of the form nZ (see Corollary 6.7

and Example 26.11) and since nZ = 〈n〉 = 〈−n〉, then every ideal is a principal

ideal. So Z is a PID.

Note. Theorem 27.24 says that if F is a field then every ideal of F [x] is principal.

So for every field F , the integral domain F [x] is a PID.

Note. The goal of this section is to prove two results (the first of which is poetically

brief):

1. Theorem 45.17. Every PID is a UFD.

2. Theorem 45.29. If D is a UFD, then D[x] is a UFD.

We need a few more definitions before completing the lengthy proofs.

Definition 45.8. If {Ai | i ∈ I} is a collection of sets, then the union of the sets,

denoted ∪i∈IAi, is the set of all x such that x ∈ Ai for some i ∈ I.

Lemma 45.9. Let R be a commutative ring and let N1 ⊆ N2 ⊆ · · · be an ascending

chain of ideals Ni in R. Then N = supi Ni is an ideal of R.
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Lemma 45.10. The Ascending Chain Condition for a PID.

Let D be a PID. If N1 ⊆ N2 ⊆ · · · is an ascending chain of ideals, then there exists

a positive integer r such that Nr = Ns for all s ≥ r. Equivalently , every strictly

ascending chain of ideals in a PID is of finite length. Under such conditions it is

said that the ascending chain condition holds for ideals in a PID.

Note 1. In the following proofs we will use the facts that:

(1) 〈a〉 ⊆ 〈b〉 if and only if b | a.

proof. If 〈a〉 ⊆ 〈b〉 then a ∈ 〈b〉 and then a = bd for some d ∈ D. Then b | a. If

b | a then a = bd for some d ∈ D and then a ∈ 〈b〉, or 〈a〉 ⊆ 〈b〉. �

(2) 〈a〉 = 〈b〉 if and only if a and b are associates.

proof. We have 〈a〉 = 〈b〉 if and only if a | b and b | a by (1). This is the case

if and only if a = bc and b = ad for some c, d ∈ D, or a = bc = (ad)c and then

dc = 1. So d and c are units and a and b are associates (and conversely). �

Note. The following gives us the first condition in the definition of UFD for a

PID.

Theorem 45.11. Let D be a PID. Every element that is neither 0 nor a unit of

D is a product of irreducibles.
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Note. To prove that every PID is a UFD, we now need to show that every PID

satisfies the second condition in the definition of a UFD. That is, we need to show

that the product of irreducibles of Theorem 45.11 is unique (in the sense explained

in the definition of UFD).

Note. Let R be a ring. Recall that an ideal M of R, where M 6= R, is a maximal

ideal of R if there is no proper ideal N of R properly containing M . Recall that

Theorem 27.25 says that ideal 〈p(x)〉 6= {0} or ring F [x] (where F is a field) is

maximal if and only if p(x) is irreducible over F . (This result was an important

part of the proof of Kronecker’s Theorem [Theorem 29.3].) The following result is

analogous to Theorem 27.25 but is in the setting of PIDs.

Lemma 45.12. An ideal 〈p〉 is a PID is maximal if and only if p is irreducible.

Note. Recall that Theorem 27.27 says that for irreducible p(x) ∈ F [x] (F a field),

if p(x) divides r(x)s(x) for r(x), s(x) ∈ F [x] then either p(x) divides r(x) or s(x).

The following result is analogous to Theorem 27.27 but is in the setting of PIDs.

Recall that an ideal N 6= R is a commutative ring R is a prime ideal if ab ∈ N

implies that either a ∈ N or b ∈ N for a, b ∈ R.

Lemma 45.13. In a PID, if an irreducible p divides ab then either p | a or p | b.
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Corollary 45.14. If p is an irreducible in a PID and p divides the product

a1a2 · · · an for ai ∈ D, then p | ai for at least on i.

Proof. This follows by induction from Lemma 45.13.

Definition 45.15. A nonzero nonunit element p of an integral domain D is a

prime if, for all a, b ∈ D, p | ab implies either p | a or p | b.

Note. In Exercises 25 and 26, it is shown that a prime in an integral domain is

irreducible and that in a UFD an irreducible is a prime. Since a UFD is a type of

integral comain, then “prime” and “irreducible” are the same in a UFD. The next

example shows that in some integral domains there are irreducibles that are not

primes.

Example 45.16. Let F be a field and let D be the subdomain F [x3, xy, y3] of

F [x, y]. (That is, x3, xy, y3, x, y are indeterminates [not something involving free

groups, though the notation is similar].) Then x3, xy, y3 are irreducibles in D

(“clearly”), but (x3) = (y3) = (xy)(xy)(xy). So xy divides x3y3 but xy divides

neither x3 nor y3. So xy is not prime. (Elements x3 and y3 are also irreducible and

not prime.)

Theorem 45.17. Every PID is a UFD.
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Note. A natural question to ask now is: “Is every UFD a PID” (that is, are UFDs

and PIDs equivalent)? We will see in Example 45.31 a UFD which is not a PID.

Corollary 45.18. Fundamental Theorem of Arithmetic.

The integral domain Z is a UFD.

Note. We normally think of the Fundamental Theorem of Arithmetic as stating

that every natural number can be uniquely written as a product of primes. The

units in Z are 1 and −1 and the irreducibles in Z are the positive primes and the

negative primes. So the only associate of a prime is its negative. Since Z is a

UFD, every element can be expressed as a product of irreducibles (i.e., positive

and negative primes) uniquely in the sense of Property 2 of the definition of UFD

(that is, different products of irreducibles involve pairwise associates). So if a =

p1p2p · · · pr in Z and a ∈ N, then there must be an even number of negative pi’s and

we can replace these with corresponding positive associates to produce a unique

factorization of a into a product of positive primes in N. So Corollary 45.18 implies

the traditional Fundamental Theorem of Arithmetic in N.

Note. We now show that if D is a UFD then D[x] is a UFD. This requires some

new definitions and several preliminary results.
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Definition 45.19. Let D be a UFD and let a1, a2, . . . , an be nonzero elements in

D. An element d ∈ D is a greatest common divisor (or “gcd”) of all the ai if d | ai

for i = 1, 2, . . . , n and any other d′ ∈ D that divides all the ai also divides d.

Note. If both d and d′ are gcd’s of the ai then d | d′ and d′ | d. Thus d = q′d′

and d′ = qd for some q, q′ ∈ D. Then d = q′d′ = q′qd and by cancellation in D (by

Theorem 19.5) 1 = q′q and q and q′ are units and d and d′ are associates. So gcd’s

are not unique in a UFD, but different gcd’s must be associates. In Z, this means

that different gcd’s differ by a multiple of −1.

Example 45.20. Consider 420, −168, and 252 in D. We know 420 = 22 · 3 · 5 · 7,

−168 = −1 · 23 · 3 · 7 and 252 = 22 · 32 · 7. To find a gcd, we algorithmically choose

the highest power of each irreducible common to to each number: 22 ·3 ·7 = 84. So

a gcd is 84. Another is −84 (notice that −1 is not an irreducible since it is a unit).

Definition 45.21. Let D be a UFD. A noncontant polynomial f(x) = a0 + a1x +

a2x
2 + · · · + anx

n in D[x] is primitive if 1 is a gcd of the ai for i = 0, 1, . . . , n.

Example 45.22. In Z[x], 4x2 + 3x + 2 is primitive but 4x2 + 6x + 2 is not. Notice

that a nonconstant irreducible in D[x] must be a primitive polynomial.
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Lemma 45.23. If D is a UFD then for every nonconstant f(x) ∈ D[x] we have

f(x) = cg(x) where c ∈ D, g(x) ∈ D[x] and g(x) is a primitive. The element c is

unique up to a unit factor in D and is the content of f(x). Also g(x) is unique up

to a unit factor in D.

Lemma 45.25. Gauss’s Lemma.

If D is a UFD, then a product of two primitive polynomials in D[x] is again prim-

itive.

Corollary 45.26. If D is a UFD, then a finite product of primitive polynomials

in D[x] is again primitive.

Proof. This follows by induction from Lemma 45.25.

Note. In the following result, D is a UFD and F is field of quotients of D (see

Section 21). By Theorem 23.20, F [x] is also a UFD. In our last major result of

this section (Theorem 45.29) we’ll show that D[x] is a UFD. In the proof, we will

relate factorization of polynomials in F [x] to factorization in D[x].

Lemma 45.27. Let D be a UFD and let F be a field of quotients of D. Let

f(x) ∈ D[x] where (degree f(x)) > 0. If f(x) is an irreducible in D[x], then f(x)

is also an irreducible in F [x]. Also, if f(x) is primitive in D[x] and irreducible in

F [x], then f(x) is irreducible in D[x].
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Corollary 45.28. If D is a UFD and F is a field of quotients of D, then a

nonconstant f(x) ∈ D[x] factors into a product of two polynomials of lower degrees

r and s in F [x] if and only if it has a factorization into polynomials of the same

degrees r and s in D[x].

Theorem 45.29. If D is a UFD, then D[x] is a UFD.

Corollary 45.30. If F is a field and x1, x2, . . . , xn are indeterminates, then

F [x1, x2, . . . , xn] is a UFD.

Example 45.31. Now for an example of a UFD which is not a PID. Let F be a

field and let x and y be indeterminates. Then F [x, y] is a UFD by Corollary 45.30.

Consider the set N of all polynomials in x and y in F [x, y] having constant term

0. Then N is an ideal (since aN ⊆ N and Nb ⊆ N for all a, b ∈ F ). A principal

ideal is of the form N = {ar | r ∈ F} = 〈a〉 and so includes 0. So our N cannot be

a principal ideal. Thus F [x, y] is not a PID.

Note. Since Z is a UFD by the Fundamental Theorem of Arithmetic (Corollary

45.18), by Theorem 45.29 Z[x] is a UFD. In Exercise 46.12 it is shown that Z[x] is

not a PID.
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