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Section IX.46. Euclidean Domains

Note. Fraleigh comments at the beginning of this section: “Now a modern tech-

nique of mathematics is to take some clearly related situations and try to bring

them under one roof by abstracting the important ideas common to them.” In

this section, we take the idea of the division algorithm for integral domain Z and

generalize it to other integral domains.

Note. Recall:

1. Division Algorithm for Z (Theorem 6.3).

If m is a positive integer and n is any integer, then there exist unique integers

q and r such that n = mq + r and 0 ≤ r < m.

2. Division Algorithm for F [x] (Theorem 23.1).

Let F be a field and let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 and g(x) =

bnx
n + bm−1x

m−1 + · · ·+ b1x+ b0 be two elements of F [x], with an and bm both

nonzero elements of F and m > 0. Then there are unique polynomials q(x)

and r(x) in F [x] such that f(x) = g(x)q(x) + r(x), where either r(x) = 0 or

the degree of r(x) is less than the degree m of g(x).

Note. We now introduce a function which maps an integral domain into the

nonnegative integers and use the values of this function to replace the ideas of

“remainder” in Z and “degree” in F [x].
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Definition 46.1. A Euclidean norm on an integral domain D is a function v

mapping the nonzero elements of D into the nonnegative integers such that the

following conditions are satisfied:

1. For all a, b ∈ D with b 6= 0, there exist q and r in D such that a = bq + r

where either r = 0 or v(r) < v(b).

2. For all a, b ∈ D where neither a nor b is 0, we have v(a) ≤ v(ab).

An integral domain D is a Euclidean domain if there exists a Euclidean norm on

D.

Note. Condition 1 deals with the remainder concept. Condition 2 will let us

characterize the units of a Euclidean domain.

Example 46.2. The integral domain Z is a Euclidean domain where we take

v(n) = |n| for n 6= 0. Condition 1 holds by the Division Algorithm for Z (Theorem

6.3). Condition 2 holds because |ab| = |a||b| and |a| ≥ 1 for a 6= 0 in Z.

Example 46.3. If F is a field, then F [x] is a Euclidean domain where we take

v(f(x)) = (degree f(x)) for f(x) ∈ F [x] and f(x) 6= 0 (v is only defined on the

nonzero elements by definition). Condition 1 holds by the Division Algorithm for

F [x] (Theorem 23.1). Condition 2 holds since the degree of the product of two

polynomials is the sum of their degrees.
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Theorem 46.4. Every Euclidean domain is a PID.

Corollary 46.5. Every Euclidean domain is a UFD.

Proof. Let D be a Euclidean domain. By Theorem 46.4 D is a PID. By Theorem

45.17 D is a UFD.

Note. We now use Condition 2 of a Euclidean norm to characterize the units of a

Euclidean domain.

Theorem 46.6. For a Euclidean domain with a Euclidean norm v, v(1) is minimal

among all v(a) for nonzero a ∈ D, and u ∈ D is a unit if and only if v(u) = v(1).

Example 46.7. To illustrate Theorem 46.6, consider the Euclidean domain Z with

v(n) = |n| for n 6= 0, we have that v(1) = 1 is minimal and the only elements in Z

with v equal to 1 are 1 and −1, the units in Z.

Example 46.8. For field F and Euclidean domain F [x] where v(f(x)) = (degree f(x))

for nonzero f(x), the minimum value of v is 0 and this is the value of v for the

nonzero constant polynomials. As we know, the only units in F [x] are the nonzero

constant polynomials (which we associate with the nonzero elements of F ). We

now see the importance of defining v only for the nonzero elements! Without this,

we could not use Condition 2 to classify units in Theorem 46.6.
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Note. The next result allows us to find gcd’s in a Euclidean domain in a way

similar to the approach in N.

Theorem 46.9. Euclidean Algorithm.

Let D be a Euclidean domain with a Euclidean norm v, and let a and b be nonzero

elements of D. let r1 be as in Condition 1 for a Euclidean norm, that is a = bq1 +r1

where either r1 = 0 or v(r1) < v(b). If r1 6= 0, let r2 be such that b = r1q2 + r2

where either r2 = 0 or v(r2) < v(r1). Recursively, let ri+1 be such that ri−1 =

riqi+1 + ri+1 where either ri+1 = 0 or v(ri+1) < v(ri). Then the sequence r1, r2, . . .

must terminate with some r3 = 0. If r1 = 0, then b is a gcd of a and b. If r1 6= 0

and rs = 0 is the first ri = 0 then a gcd of a and b is rs−1. Furthermore, if d is a

gcd of a and b, then there exist λ and µ in D such that d = λa + µb.

Examples 46.10 and 46.11. We now illustrate the Euclidean Algorithm. The

big benefit of it is that it allows us to find a gcd (“algorithmically”) without directly

factoring the two “numbers.” Consider the Euclidean domain Z with Euclidean

norm v(n) = |n| for n ∈ Z, n 6= 0. We find a gcd of a = 22,471 and b = 3,266.
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Starting with a = r−1, b = r0, and the relation ri−1 = riqi+1 + ri+1 we get:

i ri−1 = riqi+1 + ri+1 ri+1

0 22,471 = (3,266)6 + 2,875 2,875

1 3,266 = (2,875)1 + 391 391

2 2,875 = (391)7 + 138 138

3 391 = (138)2 + 115 115

4 138 = (115)1 + 23 23

5 115 = (23)5 + 0 0

So a gcd of 22,471 and 3,266 if r5 = 23. Notice that we do not have to have positive

remainders. Fraleigh shows that we can use negative remainders (remember that

v is absolute value) to cut the algorithm down to four steps in this example:

i ri−1 = riqi+1 + ri+1 ri+1

0 22,471 = (3,266)7− 391 −391

1 3,266 = (391)8 + 138 138

2 391 = (138)3− 23 −23

3 138 = (23)6 + 0 0

So a gcd of 22,471 and 3,266 is r2 = −23.
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