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Section IX.47. Gaussian Integers and

Multiplicative Norms

Note. In this section, we give another example of a Euclidean domain (other than

Z and F [x]), namely the Gaussian integers. We define a multiplicative norm on in

integral domain and give an application of it to number theory and prime numbers.

Definition 47.1. A Gaussian integer is a complex number a + bi where a, b ∈ Z.

For Gaussian integer α = a + bi, define the norm of α as N(α) = a2 + b2.

Note. To an analyst, the above definition of “norm” is rather weird! Traditionally,

the norm on C is ‖a + bi‖ =
√

a2 + b2 and we then show that this norm satisfies

certain properties such as the triangle inequality. however, here our agenda is very

different and we will use N for the Euclidean norm of an integral domain (namely,

the integral domain is the Gaussian integers).

Note. We denote the Gaussian integers as Z[i] (not to be confused with an ex-

tension field [hey, Z is not a field!], group action on a set, or any of the other

wonderful things we’ve represented with square brackets). We will show that Z[i]

is a Euclidean domain. Notice that the units of Z[i] are ±1 and ±i.
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Lemma 47.2. In Z[i], the following properties of the norm function N hold for all

α, β ∈ Z[i]:

1. N(α) ≥ 0,

2. N(α) = 0 if and only if α = 0, and

3. N(αβ) = N(α)N(β).

Proof. The proof is Exercise 47.11. �

Lemma 47.3. Z[i] is an integral domain.

Theorem 47.4. The function v given by v(α) = N(α) for nonzero α ∈ Z[i] is a

Euclidean norm in Z[i] and so Z[i] is a Euclidean domain.

Definition 47.6. Let D be an integral domain. A multiplicative norm N on D is

a function mapping D onto the integers Z such that the following conditions are

satisfied:

1. N(α) = 0 if and only if α = 0, and

2. N(αβ) = N(α)N(β) for all α, β ∈ D.



IX.47. Gaussian Integers and Multiplicative Norms 3

Theorem 47.7. If D is an integral domain with a multiplicative norm N , then

N(1) = 1 and |N(u)| = 1 for every unit u ∈ D. If, furthermore, every α satisfying

|N(α)| = 1 is a unit in D, then an element π ∈ D with |N(π)| = p for a prime

p ∈ Z is an irreducible of D.

Example 47.8. On Z[i], the Euclidean norm N(a + bi) = a2 + b2 is also a multi-

plicative norm. So Theorem 47.7 applies to Z[i]. As commented above, the unites

of Z[i] are ±1 and ±i (as the first claim in Theorem 47.7 verifies). Notice that

5 ∈ Z[i] is not irreducible since 5 = (1 + 2i)(1 − 2i). But, by the second claim of

Theorem 47.7, N(1 + 2i) = N(1− 2i) = 5 and so 1 + 2i and 1 = 2i are irreducible

in Z[i].

Note. The following example, which Fraleigh calls a “standard illustration,” is

another example of an integral domain which is not a UFD.

Example 47.9. Let Z[
√

5i] = {a + b
√

5i | a, b ∈ Z}. Then Z[
√

5i] is an integral

domain (commutative ring with unity and not divisors of 0). Define N as N(a +

b
√

5i) = a2+b2. Then N(α) = 0 if and only if α = 0. We have N(αβ) = M(α)N(β)

(Exercise 47.12). Now e consider the units of Z[i
√

5]. Suppose N(α) = 1 where

α = ab

√
5i. Then a2 + 5b2 = 1 for integers a and b and it must be that a = ±1 and

b = 0. So the units in Z[
√

5i] are 1 and −1.

In Z[
√

5i] we have 21 = (3)(7) = (1 + 2
√

5i)(1 − 2
√

5i). Below we show that

3, 7, 1 + 2
√

5i, and 1− 2
√

5i are irreducibles in Z[
√

5i] and hence Z[
√

5i] is not a

UFD.
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To show 3 is irreducible, suppose 3 = αβ. Then 9 = N(3) = N(α)N(β) and so

B(α) is 1, 3, or 9. If N(α) = 1, then α is a unit by Theorem 47.7. If α = a + b
√

5i

then N(α) = a2 + 5b2 = 3 but there are no such integers a and b so N(α) 6= 3.

If N(α) = 9 then N(β) = 1 and β is a unit by Theorem 47.7. So if 3 = αβ then

either α or β is a unit. That is, 3 is irreducible. Similarly, 7 is irreducible.

If 1 + 2
√

5i = γδ then 21 = N(1 + 2
√

5i) = N(γ)N(δ), so N(γ) is either 1, 3,

7, or 21. By the previous paragraph, there is no element of Z[i] of norm 3 or 7.

So either N(γ) = 1 and γ is a unit, or N(γ) = 21, N(δ) = 1, and δ is a unit. So

1 + 2
√

5i is irreducible. Similarly, 1− 2
√

5i is irreducible.

So Z[
√

5i] is not a UFD. Notice that the irreducibles 3, 7, 1+2
√

5i, and 1−2
√

5i

are irreducibles but they cannot be primes. This is because a property of primes

involves unique factorization (see the proof of Theorem 45.17).

Note. The following is an example from “algebraic number theory.”

Theorem 47.10. Fermat’s p = a2 + b2 Theorem.

Let p be an odd prime in Z. Then p = a2 + b2 for integers a, b ∈ Z if and only if

p ≡ 1 (mod 4).

Example. As a quick example, notice that p = 601 is a prime which is 1 (mod 4).

The corresponding a and b are 5 and 24.
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