Review Notes. For Sections X.50 and X.51

Note. The following results will be useful to recall when covering Sections X.50 and X.51.

Theorem 30.23. Let E be an extension field of field F and let $\alpha \in E$ be algebraic over F. If $\deg(\alpha, F) = n$, then $F(\alpha)$ is an *n*-dimensional vector space over F with basis $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$. Furthermore, every element β of $F(\alpha)$ is algebraic over F, and $\deg(\beta, F) \leq \deg(\alpha, F)$.

Definition 31.2. If an extension field E of field F is of finite dimension n as a vector space over F, then E is a *finite extension of degree* n over F. We denote this as n = [E : F].

Theorem 31.3. A finite (degree) extension field E of field F is an algebraic extension of F.

Definition 48.16. The group G(E/F) of Theorem 48.15 is the group of *automorphisms of E leaving F fixed*, or the group of E over F.

Definition 49.9. Let E be a finite extension of a field F. The number of isomorphisms of E onto a subfield of \overline{F} leaving F fixed (which is finite by Theorem 49.7) is the *index of* E over F, denoted $\{E : F\}$.

Corollary 50.7. If $E \leq \overline{F}$ is a splitting field over F, then every isomorphic mapping of E onto a subfield of \overline{F} leaving F fixed is actually an automorphism of E. In particular, if E is a splitting field of finite degree over F, then $\{E : F\} = |G(E/F)|$, where G(E/F) is the group of automorphisms of E having F fixed.

Revised: 4/13/2015