Summary Notes. For Section X.53

Note. The following results are a summary of the "Greatest Hits" of the first half of Section X.53.

Recall. If $F \leq E$, the collection of all automorphisms of E leaving F fixed forms a group G(E/F).

Definition 51.7. A finite extension E of F is a separable extension field of F if $\{E:F\} = [E:F].$

Definition 50.1. A field $E \leq \overline{F}$ is the splitting field of $\{f_i(x) \mid i \in I\}$ over F if E is the smallest subfield of \overline{F} containing F and all the zeros in \overline{F} of each of the $f_i(x)$ for $i \in I$. A field $K \leq \overline{F}$ is a splitting field over F if it is the splitting field of some set of polynomials in F[x].

Definition 53.1. A finite extension K of F is a *finite normal extension of* F if K is a separable splitting field over F.

Note. K is a finite normal extension of F if and only if $|G(K/F)| = \{K : F\} = [K : F]$. (See the Note after Definition 53.)

Theorem 48.11. Let $\{\sigma_i \mid i \in I\}$ be a collection of automorphisms of a field E. Then the set $E_{\{\sigma_i\}}$ of all $a \in E$ fixed by every σ_i for $i \in I$ forms a subfield of E. (In particular, for F a subfield of K and H < G(K/F), K_H is the subfield of Kleft fixed by all automorphisms of K in H.) **Note.** For a field E, where $F \leq E \leq K$, let $\lambda(E)$ be the subgroup of G(K/F) leaving E fixed.

Theorem 53.6. The Main Theorem of Galois Theory. (Partial)

Let K be a finite normal extension of a field F, with Galois group G(K/F). For a field E, where $F \leq E \leq K$, let $\lambda(E)$ be the subgroup of G(K/F) leaving E fixed. Then λ is a one to one map of the set of all such intermediate fields E onto the set of all subgroups of G(K/F):

Revised: 4/13/2015