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Part V. Ideals and Factor Rings

Section V.26. Homomorphisms and Factor Rings

Note. In Part III we explored homomorphisms of groups and used the kernel of

a homomorphism to create a group of cosets called the factor group (or quotient

group) of the group modulo the kernel. In this section, we parallel this development

but now for rings.

Definition 26.1. A map ϕ of a ring R into a ring R′ is a ring homomorphism if

ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R.

Note. As you have seen in the past, a homomorphism is a structure preserving

map. For a ring, the “structure” consists of the operations of + and ·.

Example 26.2. Let R1, R2, . . . , Rn be rings. For each i, i = 1, 2, . . . , n, the

map πi((r1, r2, . . . , rn)) = ri is a homomorphism called the projection onto the ith

component.

Note. The following several results on ring homomorphisms are analogous to the

results developed in Section 13 for group homomorphisms.
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Theorem 26.3. (Analogue of Theorem 13.12.)

Let ϕ be a homomorphism of a ring R into a ring R′. If 0 is the additive identity in

R, then ϕ(0) = 0′ is the additive identity in R′, and if a ∈ R, then ϕ(−a) = −ϕ(a).

If S is a subring of R, then ϕ[S] is a subring of R′. If S ′ is a subring of R′, then

ϕ−1[S ′] is a subring of R. If R has unity 1, then ϕ(1) is unity for ϕ[R].

Definition 26.4. Let a map ϕ : R → R′ be a ring homomorphism. The subring

ϕ−1[0′] = {r ∈ R | ϕ(r) = 0′}

is the kernel of ϕ, denoted Ker(ϕ).

Theorem 26.5. (Analogue of Theorem 13.15.)

Let ϕ : R → R′ be a ring homomorphism and let H = Ker(ϕ). Let a ∈ R. Then

ϕ−1[ϕ(a)] = a + H = H + a, where a + H = H + a is the coset containing a of the

commutative additive group 〈H, +〉.

Corollary 26.6. (Analogue of Theorem 13.18.)

A ring homomorphism ϕ : R → R′ is a one to one map if and only if Ker(ϕ) = {0}.

Note. The following several results on factor rings are analogous to the results

developed in Section 14 for factor groups.
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Theorem 26.7. (Analogue of Theorem 14.1.)

Let ϕ : R → R′ be a ring homomorphism with kernel H. Then the additive

cosets of H form a ring R/H whose binary operations are defined by choosing

representatives. That is, the sum of two cosets is defined by (a + H) + (b + H) =

(a + b) + H and the product of the cosets is defined by (a + H)(b + H) = (ab) + H.

Also, the map µ : R/H → ϕ[R] defined by µ(a + H) = ϕ(a) is an isomorphism.

Example 26.8. Consider ϕ : Z → Zn where ϕ(x) = x (mod n). This is shown to

be a ring homomorphism in Example 18.11 (page 171). By Theorem 26.7, we can

compute sums and products in the ring Z/nZ (Ker(ϕ) = nZ) using coset represen-

tatives. Also, by Theorem 26.7, we see that µ : Z/nZ → Zn is an isomorphism.

Note. When we defined the factor group G/H we originally based it on the kernel

H of a homomorphism. Following that, we defined a factor group G/H in terms of

a normal subgroup H. We now look for a condition on a subring of a ring, which

will correspond to the condition on normal subgroups, so that we might generate

factor rings in a setting other than that of homomorphisms.

Theorem 26.9. (Analogue of Theorem 14.4.)

Let H be a subring of the ring R. Multiplication of additive cosets of H is well

defined by the equation (a + H)(b + H) = ab + H if and only if ah, hb ∈ H for all

a, b ∈ R and h ∈ H.
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Note. Theorem 26.9 tells us that we can define multiplication of additive cosets if

(and only if)

aH = {ah | h ∈ H} ⊆ H and Hb = {hb | h ∈ H} ⊆ H

for all a, b ∈ R. This is the property of rings analogous to the property of normal

subgroups which allowed us to produce factor groups. We’ll denote subgroups with

this property with an N .

Definition 26.10. An additive subgroup N of a ring R satisfying the properties

aN ⊆ N and Nb ⊆ N for all a, b ∈ R is an ideal.

Example 26.13. Let F be the ring of all functions mapping R into R. Let N be

the subring of F of all functions f such that f(2) = 0. Then N is an ideal in F .

This is because for f ∈ F and g ∈ N we have

fN = {fg | g ∈ N} = {f(x)g(x) | g(2) = 0} ⊆ N

since for f(x) ∈ F , f(2)g(2) = f(2)0 = 0. Similarly, Nf ⊆ N .

Corollary 26.14. (Analogue of Corollary 14.5.)

Let N be an ideal of a ring R. Then the additive cosets of N form a ring R/N

with the binary operations defined by (a + N) + (b + N) = (a + b) + N and

(a + N)(b + N) = ab + N.
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Definition 26.15. The ring R/N in Corollary 26.14 is the factor ring (or quotient

ring) of R by N .

Note. The following two results complete the analogies between factor groups

(quotient groups) and factor rings (quotient rings).

Theorem 26.16. (Analogue of Theorem 14.9.)

Let N be an ideal of a ring R. Then γ : R → R/N given by γ(x) = x + N is a ring

homomorphism with kernel N .

Theorem 26.17. Fundamental Homomorphism Theorem (Analogue of

Theorem 14.11.)

Let ϕ : R → R′ be a ring homomorphism with kernel N . Then ϕ[R] is a ring

and the map µ : R/N → ϕ[R] given by µ(x + N) = ϕ(x) is an isomorphism. If

γ : R → R/N is the homomorphism given by γ(x) = x + N then for each x ∈ R,

we have ϕ(x) = (µγ)(x).

Note. So ideals for rings are analogous to normal subgroups for groups—they

allow us to define quotient rings (respectively, quotient groups). The next exercise

is further evidence of this.
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Exercise 26.22. Let ϕ : R → R′ be a ring homomorphism and let N be an ideal

of R.

(a) Then ϕ[N ] is an ideal of ϕ[R].

(c) Let N ′ be an ideal either of ϕ[R] or of R′. Then ϕ−1[N ′] is an ideal of R.
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