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Section V.27. Prime and Maximal Ideals

Note. In this section, we explore ideals of a ring in more detail. In particular,

we explore ideals of a ring of polynomials over a field, F [x], and make significant

progress toward our “basic goal.” First, we give several examples of rings R and

factor rings R/N where R and R/N have different structural problems.

Examples 27.1 and 27.4. Consider the ring Z, which is an integral domain (it

has unity and no divisors of 0). Then pZ is an ideal of Z (see Example 26.10) and

Z/pZ is isomorphic to Zp (see the bottom of page 137). We know that for prime

p, Zp is a field (Corollary 19.12). So a factor ring of an integral domain may be a

field. Of course, nZ is also an ideal of Z for any n ∈ N but Z/nZ ∼= Zn is not a

field (not even an integral domain since it has divisors of 0) when n is not prime.

Example 27.2. Ring Z×Z is not an integral domain since it has divisors of zero:

(0,m)(n, 0) = (0, 0) where m and n are nonzero. Let N = {(0, n) | n ∈ Z}. Then

N is an ideal of Z×Z and Z×Z/N is isomorphic to Z (map coset m+N = m+ Z

to m ∈ Z). Of course, Z is an integral domain. So a factor ring of a ring may be

an integral domain when the original ring is not an integral domain.
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Example 27.3. Ring Z6 is not an integral domain (“2 × 3 = 0”) and N = {0, 3}

is an ideal of Z6. Now Z6/N has elements 0+N , 1+N , 2+N and so is isomorphic

to Z3 which is a field. So the factor ring of a non-integral domain can be a field

(and hence an integral domain).

Definition. For ring R, R itself is an ideal called the improper ideal. Also, {0} is

an ideal of R called the trivial ideal. A proper nontrivial ideal of R is an ideal N

such that N 6= R and N 6= {0}.

Theorem 27.5. If R is a ring with unity and N is an ideal of R containing a unit,

then N = R.

Corollary 27.6. A field contains no proper nontrivial ideals.

Proof. In a field, every nonzero element is a unit. So by Theorem 27.5, the only

ideals are {0} and the whole field.

Note. The previous two results tell us that we are not interested in factor rings

based on an ideal with a unit (and hence, not interested in “factor fields”).

Definition 27.7. A maximal ideal of ring R is an ideal M 6= R such that there is

no proper ideal N of R properly containing M .
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Example. For R = Z6, two maximal ideals are M1 = {0, 2, 4} and M2 = {0, 3}.

For R = Z12, two maximal ideals are M1 = {0, 2, 4, 6, 8, 10} and M2 = {0, 3, 6, 9}.

Two other ideals which are not maximal are {0, 4, 8} and {0, 6}.

Theorem 27.9. (Analogue of Theorem 15.18)

Let R be a commutative ring with unity. Then M is a maximal ideal of R if and

only if R/M is a field.

Example 27.10. Since Z/nZ ∼= Zn (see the bottom of page 137) and Zp is a field

if and only if p is prime (Theorem 19.11 and Corollary 19.12), so by Theorem 27.9,

the maximal ideals of Z are precisely the ideals pZ where p is prime.

Corollary 27.11. A commutative ring with unity is a field if an only if it has no

proper nontrivial ideals.

Note. Suppose R is a commutative ring with unity and N 6= R is an ideal of R.

Then R/N is an integral domain (i.e., has no divisors of zero) if and only if

(a + N)(b + N) = N ⇒ a + N = N or b + N = N (∗)

(since N is the additive identity in R/N). Since coset multiplication is defined

using representatives and (a+N)(b+N) = ab+N , then condition (∗) is equivalent

to

ab ∈ N ⇒ a ∈ N or b ∈ N.
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Definition 27.13. An ideal N 6= R in a commutative ring R is a prime ideal if

ab ∈ N implies that either a ∈ N or b ∈ N for all a, b ∈ N .

Note. The previous note combines with the definition of “prime ideal” to give the

following.

Theorem 27.15. Let R be a commutative ring with unity, and let N 6= R be an

ideal in R. Then R/N is an integral domain if and only if N is a prime ideal in R.

Corollary 27.16. Every maximal ideal in a commutative ring R with unity is a

prime ideal.

Proof. If M is a maximal ideal in R, then R/M is a field by Theorem 27.9 and so

is an integral domain. By Theorem 27.15, M is a prime ideal in R.

Example 27.12. For R = Z, we have the ideals nZ where n ∈ {0} ∪ N are the

ideals in R. The only time these ideals are prime ideals are when n = p is prime

and N = pZ (hence the term “prime ideal”). By Example 27.10, these are exactly

the maximal ideals in R = Z. This illustrates Corollary 27.16 in that the maximal

ideals pZ are all prime ideals.
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Note. The text emphasizes our knowledge of maximal and prime ideals at this

stage as:

1. An ideal M of R is maximal if and only if R/M is a field.

2. An ideal N of R is prime if and only if R/N is an integral domain.

3. Every maximal ideal is a prime ideal.

Theorem 27.17. If R is a ring with unity 1 then the map φ : Z → R given

by φ(n) = n · 1 where n · 1 = 1 + 1 + · · · + 1 (n times) for n ∈ N and n · 1 =

(−1) + (−1) + · · ·+ (−1) (|n| times) for −n ∈ N, is a homomorphism of Z into R.

Note. The following result shows that the rings Z and Zn “form the foundations

upon which all rings with unity rest” (page 249).

Corollary 27.18. If R is a ring with unity and characteristic n > 1, then R

contains a subring isomorphic to Zn. If R has characteristic 0 then R has a subring

isomorphic to Z.

Note. The following result shows that the fields Q and Zp “form the foundations

upon which all” fields rest (page 249).

Theorem 27.19. A field F is either of prime characteristic p and contains a sub-

field isomorphic to Zp, or it is of characteristic 0 and contains a subfield isomorphic

to Q.
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Definition 27.20. The fields Zp and Q are prime fields.

Definition 27.21. If R is a commutative ring with unity and a ∈ R, the ideal

{ra | r ∈ R} of all multiples of a is the principal ideal generated by a, denoted 〈a〉.

An ideal N of R is a principal ideal if N = 〈a〉 for some a ∈ R.

Example 27.22. Every ideal of the ring Z is of the form nZ by Example 26.11

and nZ is generated by n, so every ideal of Z is a principal ideal.

Example 27.23. The ideal 〈x〉 in F [x] is the set of all products of the form

xp(x) for p(x) ∈ F [x]. So this principal ideal consists of all polynomials with zero

constant term. What is 〈x2〉?

Theorem 27.24. If F is a field then every ideal in F [x] is principal.

Note. The following result is instrumental in proving our “basic goal”: Any non-

constant polynomial f(x) ∈ F [x] has a zero in some field E containing F (E is

called an “extension field” of F ). This result is called Kronecker’s Theorem and

will be proven in Section 29.

Theorem 27.25. An ideal 〈p(x)〉 6= {0} of F [x] is maximal if and only if p(x) is

irreducible over F .
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Note. We now have the equipment to prove Theorem 23.18 concerning factoriza-

tion and irreducible polynomials.

Theorem 23.18/27.27. Let p(x) be an irreducible polynomial in F [x]. If p(x)

divides r(x)s(x) for r(x)s(x) ∈ F [x], then either p(x) divides r(x) or p(x) divides

s(x).
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