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Part VI. Extension Fields

Section VI.29. Introduction to Extension Fields

Note. In this section, we attain our “basic goal” and show that for any polynomial

over a field F , there is an “extension field” E (that is, F is a subfield of E) such

that the polynomial has a zero in E.

Definition 29.1. A field E is an extension field of field F if F ≤ E (that is, if F

is a subfield of E).

Example. We can view R as an extension field of Q (we will see many fields

“between” Q and R) and C as an extension field of R. Notice that x2 − 2 ∈ Q[x]

but x2−2 has no zero in Q. However, x2−2 has two zeros in R. Also, x2 +1 ∈ R[x]

but x2 + 1 has no zero in R. however, x2 + 1 has two zeros in C. This foreshadows

the following result (our “basic goal”). Considering the magnitude of the result,

the proof is rather short. This is because we have lots of equipment at this stage!

Joseph Gallian in his Contemporary Abstract Algebra (8th Edition, Brooks/Cole,

2013, page 360) calls the result the “Fundamental Theorem of Field Theory.”

Theorem 29.3. Kronecker’s Theorem (Basic Goal).

Let F be a field and let f(x) be a nonconstant polynomial in F [x]. Then there

exists an extension field E of F and an α ∈ E such that f(α) = 0.
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Note. A diagram of the proof of Kronecker’s Theorem is:

Example 29.4. To further illustrate the proof of Kronecker’s Theorem, let F = R

and f(x) = x2 + 1 ∈ R[x]. Since f is irreducible over R, then 〈x2 + 1〉 is a maximal

ideal in R[x] by Theorem 27.25. So by Theorem 27.9, R[x]/〈x2 + 1〉 is a field. As

in the proof, we “identify” r ∈ R with r + 〈x2 + 1〉 ∈ R[x]/〈x2 + 1〉, so we “view”

R as a subfield of R[x]/〈x2 + 1〉, we have

f(α) = α2 + 1 = (x + 〈x2 + 1〉)2 + (1 + 〈x2 + 1〉)
︸ ︷︷ ︸

“identified” with 1

= x2 + 1 + 〈x2 + 1〉 = 〈x2 + 1〉 = 0.

So α is a zero of x2 + 1. At the end of this section we associate R[x]/〈x2 + 1〉 with

C.



VI.29 Introduction to Extension Fields 3

Example 29.5. Let F = Q and consider f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) ∈
Q[x]. Then x2 − 2 and x2 − 3 are irreducible in Q[x]. So we know there is an

extension field of Q containing a zero of x2 − 2 and there exists another extension

field of Q containing a zero of x2 − 3. However, the construction (and the proof

of Kronecker’s Theorem which we gave) does not imply that there is a single field

containing both a zero of x2 − 2 and a zero of x2 − 3.

Note. The “Kronecker” of “Kronecker’s Theorem” is Leopold Kronecker (1823–

1891) who was born in Poland and did most of his work in Germany.

He is well-known for the quote “God made the integers; all else is the work of

man.” Kronecker’s philosophical view of math is that every object of mathematics

should be constructible and constructed in a finite number of steps. In 1882 he

published “Foundations of an Arithmetic Theory of Algebraic Numbers” in which

he introduced the idea of an extension field created by adjoining a single element

(a zero of a polynomial) to the field of rational numbers. Quoting from A History

of Abstract Algebra by Israel Kleiner: “Kronecker rejected irrational numbers as
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bona fide entities since they involve the mathematical infinite. For example, the

algebraic number field Q(
√

2) was defined by Kronecker as the quotient field of the

polynomial ring Q[x] relative to the ideal generated by x2 − 2, though he would

have put it in terms of congruences rather than quotient rings. These ideas contain

the germ of what came to be known as Kronecker’s Theorem, namely that every

polynomial over a field has a root in some extension field.” Kronecker’s rival in this

“finitest” view was Richard Dedekind (1831–1916). Dedekind used an axiomatic

approach, including an acceptance of the axiomatized infinite. Whereas Kronecker

would start with the natural numbers, build the integers, the rationals, and then

finite extensions of the rationals, Dedekind treats the real numbers as a complete

ordered field from the start. Dedekind’s version of completeness (and hence his

approach to irrationals) is dealt with using “Dedekind cuts.” A Dedekind cut of

R is two nonempty sets A,B ⊂ R such that: a < b for all a ∈ A and b ∈ B,

A ∩ B = ∅, and A ∪ B = R. The claim (the “Axiom of Completeness” for R) is

that either A has a largest element or B has a smallest element. This can be stated

in everyday language as the following. Suppose an airplane taxis down a runway

and takes off. Is there a last point in time the plane is on the ground or a first

point in time that the plane is off the ground? (The answer: There is a last point

in time the plane is on the ground.) These are the ideas you will address early in

our Analysis 1 (MATH 4217/5217) class.

Definition 29.6. An element α of an extension field E of a field F is algebraic

over F if f(α) = 0 for some nonzero f(x) ∈ F [x]. If α is not algebraic over F , then

α is transcendental over F .
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Note. In the Analysis 1 (MATH 4217/5217) class, an algebraic number is a real

number which is a zero of a polynomial in Q[x]. A transcendental number is a real

number which is not algebraic. There are an infinite number of algebraic numbers

and an infinite number of transcendental numbers. . . but, surprisingly, there are

more transcendental numbers then algebraic numbers. Example 29.8 claims that π

and e are transcendental. Our book takes a slightly different definition of algebraic

number and transcendental number and allows them to be complex.

Definition 29.11. An element of C that is algebraic over Q is an algebraic number.

A transcendental number is an element of C that is transcendental over Q.

Theorem 29.12. Let E be an extension field of field F and let α ∈ E. Let

φα : F [x] → E be the evaluation homomorphism of F [x] into E such that φα(a) = a

for a ∈ F and φα(x) = α (this is the usual evaluation homomorphism of Section

22). Then α is transcendental over F if and only if φα gives an isomorphism of

F [x] with a subdomain of E. That is, if and only if φα is a one to one map.

Note. The following result will have application to the topic of algebraic field

extensions in Section 31.
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Theorem 29.13. Let E be an extension field of F and let α ∈ E where α is

algebraic over F . Then there is an irreducible polynomial p(x) ∈ F [x] such that

p(α) = 0. This irreducible polynomial p(x) is uniquely determined up to a constant

factor in F and is a polynomial of minimal degree greater than or equal to 1 in

F [x] having α as a zero. If f(α) = 0 for f(x) ∈ F [x], with f(x) 6= 0, then p(x)

divides f(x).

Definition 29.14. A polynomial is a monic polynomial if the coefficient of the

highest power of x is 1. Let E be an extension field of field F . Let α ∈ E be

algebraic over F . The unique monic polynomial p(x) having the property described

in Theorem 29.13 (in particular, p(x) is irreducible) is the irreducible polynomial

for α over F , denoted irr(α, F ). The degree of irr(α, F ) is the degree of α over F ,

denoted deg(α, F ).

Example 29.15. Of course, irr(
√

2, Q) = x2 − 2 and deg(
√

2, Q) = 2. In general,

for n ∈ N, irr( n

√
2, Q) = xn − 2 and deg( n

√
2, Q) = n. The text argues that

irr(
√

1 +
√

3, Q) = x4 − 2x2 − 2 and irr(
√

1 +
√

3, Q) = 4.

Note 29.1. Let E be an extension field of field F and let α ∈ E. If α is algebraic

over F , then by Theorem 29.13, there is p(x) ∈ F [x] such that p(x) is irreducible,

p(α) = 0 (or φα(p) = 0 where φα is the evaluation homomorphism) and for any

polynomial f(x) for which f(α) = 0, we have that p(x) divides f(x). We know

that irr(α, F ) is a unique such p(x), and so 〈irr(α, F )〉 is precisely the collection of
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all polynomials which are 0 when evaluated at α. That is, ker(φα) = 〈irr(α, F )〉.
Since irr(α, F ) is irreducible, then by Theorem 27.15 we have that 〈irr(α, F )〉 is

a maximal ideal of F [x]. So, by Theorem 27.9, F [x]/〈irr(α, F )〉 is a field. Since

φα : F [x] → F is a ring homomorphism (Theorem 22.4) with kernel ker(φα) =

〈irr(α, F )〉, then by the Fundamental Homomorphism Theorem (Theorem 26.17),

µα : F [x]/〈irr(α, F )〉 → φα[F [x]] given by µα(f(x)+〈irr(α, F )〉) = φα(f(x)) = f(α)

is an isomorphism, and so F [x]/〈irr(α, F )〉 is a field isomorphic to φα[F [x]]. Now

φα[F [x]] includes F as a subfield (the subfield of all “constant polynomials”) and

includes α (since φα(x) = α). Since a field is closed under addition and multipli-

cation, any field containing α must contain all linear combinations of powers of α

(all these linear combinations are simply the set of all polynomials with constant

term 0 evaluated at α). So, φα[F [x]] is the smallest subfield of E containing both

F and α. This is denoted F (α).

Note 29.2. Let E be an extension field of field F and let α ∈ E. If α is transcen-

dental over F then by Theorem 29.12, φα : F [x] → E is an isomorphism (i.e., φα is

one to one) of F [x] with a subdomain of E (i.e., a “sub-integral domain”). How-

ever, φα[F [x]] is not a field (α−1 /∈ φα[F [x]]). Denoting φα[F [x]] as F [α], Corollary

21.8 implies the field E contains a field of quotients of integral domain F [α]. This

field of quotients is then the smallest subfield of E containing both F and α (in the

sense described in Section 21—see the first paragraph of Section 21 on page 190,

and the first paragraph of page 195). This field of quotients is denoted F (α).
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Definition 29.17. An extension field E of field F is a simple extension of F if

E = F (α) for some α ∈ E.

Example 29.16. We know (or accept) that π is transcendental over Q. So by Note

29.1, the simple extension Q(π) is isomorphic the field Q(x) of rational functions

over Q in indeterminate x (i.e., Q(x) is isomorphic to the field of quotients of Q[x]).

So when a simple extension of a field F is made using an element transcendental

over F , the result is structurally equivalent to creating a field of quotients where

the transcendental element “acts as” an indeterminate x.

Theorem 29.18. Let E be a simple extension F (α) of field F where α is algebraic

over F . Let the degree of irr(α, F ) be n (where n ≥ 1). Then every element β of

E = F (α) can be uniquely expressed in the form

β = b0 + b1α + b2α
2 + · · · + bn−1α

n−1

where each bi ∈ F .

Note. The previous theorem should sort of remind you of a basis of a vector space.

This is further explored in the next example and dealt with in detail in the next

section.
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Example. Algebraic Development of C.

In Example 29.4, we claimed that we can associate R[x]/〈x2 + 1〉 with C. In that

example, we have R[x]/〈x2 + 1〉 as an extension field of R. Let α = x + 〈x2 + 1〉.
Then R(α) = R[x]/〈x2 + 1〉 by the definition of F (α) (see Note 29.1). Since

irr(α, F ) = x2 + 1 has degree n = 2, then every element of F (α) is of the form

a + bα for a, b ∈ R by Theorem 29.18. Since p(α) = α2 + 1 = 0, then this “α”

plays the same role as i ∈ C. So, the extension field R(α) (or R(i), if you like) is

isomorphic to C. The text calls this an “elegant algebraic way to construct C from

R.”
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