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Section VI.30. Vector Spaces

Note. In this section, we repeat some of the results of Linear Algebra (MATH

2010), but instead of considering scalars which are from R or C, we allow the

scalars to be from any field F (which we denote in this section as F). We use Greek

letters to indicate vectors.

Definition 30.1. Let F be a field. A vector space over F consists of an abelian

group V under addition together with an operation of scalar multiplication of each

element of V be each element of F on the left, such that for all a, b ∈ F and α, β ∈ V

we have:

V1: aα ∈ V

V2: a(bα) = (ab)α

V3: (a + b)α = aα + bα

V4: a(α + β) = aα + aβ

V5: 1α = α

The elements of V are vectors and the elements of F are scalars.

Note. Scalar multiplication is a function from F × V into V since it maps an

ordered pair (a, α) onto an element of V , denoted aα.
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Example 30.2. You are familiar with the vector space Rn. We can develop it here

by defining the abelian group 〈Rn,+〉 = 〈R × R × · · · × R,+〉 where addition is

defined componentwise and scalar multiplication of vector α = (a1, a2, . . . , an) by

scalar r ∈ R is defined as

rα = r(a1, a2, . . . , an) = (ra1, ra2, . . . , ran).

We can similarly develop Cn.

Example 30.3. For field F, F[x] can be viewed as a vector space. The vectors are

then
∞∑

i=0

aix
i = a0 + a1x + a2x

2 + · · · + anx
n + · · ·

where all but finitely many of the ai are 0. Vector addition and scalar multiplication

are dealt with as with polynomials (see Section 22). Notice that we loose some

structure by considering F[x] as a vector space instead of a ring of polynomials. We

cannot multiply vectors together in a vector space, but we can multiply polynomials

together in a ring of polynomials.

Example 30.4. Let E be an extension field of a field F . In the next section, we

will make extensive use of the fact that E can be interpreted as a vector space over

F . The addition of vectors (elements of E) is the usual addition in E and scalar

multiplication α (a ∈ F, α ∈ E) is the usual multiplication in E.

Theorem 30.5. If V is a vector space over field F , then 0α = 0, a0 = 0, and

(−a)α = a(−α) = −(aα) for all a ∈ F and α ∈ V .
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Definition 30.6. Let V be a vector space over field F . The vectors in subset

S = {αi | i ∈ I} of V span (or generate) V if for every β ∈ V we have

β = a1αi1 + a2αi2 + · · · + anαin

for some aj ∈ F and αij ∈ S, j = 1, 2, . . . , n. A vector
∑n

j=1
ajαij is a linear

combination of the αij .

Example 30.8. Let E be an extension field of field F . Let α ∈ E be algebraic

over F of degree n. Then F (α) is a vector space over F and by Theorem 29.18 this

vector space is spanned by the vectors in {1, α, α2, . . . , αn−1}. This will allow us to

talk about the dimension of E over F .

Definition 30.9. A vector space V over a field F is finite dimensional if there is

a finite subset of V whose vectors span V .

Example 30.10. The vector space F [x] over field F is not finite dimensional since

polynomials of arbitrarily large degree could not be linear combinations of elements

of any finite set of polynomials.

Definition 30.12. The vectors in a subset S = {αi | i ∈ I} of a vector space V

over a field F are linearly independent over F if, for any distinct vectors αij ∈ S,

any coefficients aj ∈ F and any n ∈ N we have
∑n

j=1
ajαij = 0 in V only if aj = 0

for j = 1, 2, . . . , n. If the vectors in S are not linearly independent over F then

they are linearly dependent over F .
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Example 30.14. Let E be an extension field of field F . Let α ∈ E be algebraic

over F . If deg(α, F ) = n then by Theorem 29.18, every element of F (α) can be

uniquely written in the form

b0 + b1α + b2α
2 + · · · + bn−1α

n−1

for bi ∈ F . Since 0 ∈ F (α), we have that 0 = b1 + b1α + b2α
2 + · · · + bn−1α

n−1

implies (by the uniqueness) that b0 = b1 = b2 = · · · = bn−1 = 0. So the vectors

1, α, α2, . . . , αn−1 are linearly independent over F . Since they also span F (α) (The-

orem 29.18 again) then they form a basis for F (α) over F (and “basis” is defined

next).

Definition 30.15. If V is a vector space over a field F , the vectors in a subset

B = {βi | i ∈ I} of V form a basis for V over F if they span V and are linearly

independent.

Note. In the next few results, we establish that a finite dimensional vector space

has a basis. This is also true for infinite dimensional vector spaces, but requires

Zorn’s Lemma. For details, see my notes on Introduction to Functional Analysis

(MATH 5740) from Real Analysis with an Introduction to Wavelets and Applica-

tions, by D. Hong, J. Wang, and R. Gardner (Elsevier Press, 2005): http://faculty.

etsu.edu/gardnerr/Func/notes/HWG-5-1.pdf (see page 7, Theorem 5.1.4).
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Lemma 30.16. Let V be a vector space over a field F , and let α ∈ V . If α is

a linear combination of vectors βi in V for i = 1, 2, . . . ,m and each βi is a linear

combination of vectors γj for j = 1, 2, . . . , n, then α is a linear combination of the

γj .

Theorem 30.17. In a finite dimensional vector space, every finite set of vectors

spanning the space contains a subset that is a basis.

Corollary 30.18. A finite dimensional vector space has a finite basis.

Theorem 30.19. Let S = {α1, α2, . . . , αr} be a finite set of linearly independent

vectors in a finite dimensional vector space V over a field F . Then S can be

enlarged to a basis for V over F . Furthermore, if B = {β1, β2, . . . , βn} is any basis

for V over F , then r ≤ n.

Note. The following result allows us to define the dimension of a vector space. We

can then reword Theorem 30.19 as “A linearly independent set of r vectors in a

vector space of dimension n satisfies r ≤ n.” This result can also be arrived at by

considering systems of equations, instead of the “casting out” technique of Theorem

30.17. For details, see notes used in Introduction to Functional Analysis (MATH

5740) from Real Analysis with an Introduction to Wavelets and Applications, by D.

Hong, J. Wang, and R. Gardner (Elsevier Press, 2005), section 5.1 “Groups, Fields,

and Vector Spaces” (http://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-1.

pdf).
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Corollary 30.20. Any two bases of a finite-dimensional vector space V over F

have the same number of elements.

Proof. Let B = {β1, β2, . . . , βn} and B′ = {β′
1, β

′
2, . . . , β

′
m} be two bases. By

Theorem 30.19, B is an independent set and B′ a basis, so n ≤ m. Interchanging

the roles of B and B′ gives m ≤ n. Therefore m = n.

Note. Corollary 30.20 also holds for vector spaces of infinite dimensions. See

Section 5.1 Exercise 3 of Real Analysis with an Introduction to Wavelets and Ap-

plications, by D. Hong, J. Wang, and R. Gardner (Elsevier Press, 2005).

Definition 30.21. If V is a finite-dimensional vector space over a field F , the

number of elements in a basis is the dimension of V over F .

Note. You see in Linear Algebra (MATH 2010) that for vector space V over

scalar field F, the vector space is dimension n if and only if V is isomorphic to

Fn. This is sometimes called the Fundamental Theorem of Finite Dimensional

Vector Spaces. See Theorem 5.1.2 of the functional analysis notes mentioned above

(http://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-1.pdf).

Example 30.22. Let E be an extension field of field F and let α ∈ E. If α is

algebraic over F and deg(α, F ) = n, then by Example 30.14, a basis for F (α) is

{1, α, α2, . . . , αn−1}, so the dimension of F (α) treated as a vector space over F is

n.
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Note. We now collect the claims of several of the above examples together and

give a proof of one new claim.

Theorem 30.23. Let E be an extension field of field F and let α ∈ E be algebraic

over F . If deg(α, F ) = n, then F (α) is an n-dimensional vector space over F with

basis {1, α, α2, . . . , αn−1}. Furthermore, every element β of F (α) is algebraic over

F , and deg(β, F ) ≤ deg(α, F ).
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