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Section VI.31. Algebraic Extensions

Note. In the past we have only discussed the extension of a field either abstractly

or by a single element at a time (eg., Q(
√

2)). We generalize this idea in this

section. We also introduce the idea of algebraic closure, give a brief proof based on

complex analysis which shows that C is algebraically closed, and then show that

every field has an algebraically closed extension field.

Definition 31.1. An extension field E of field F is an algebraic extension of F if

every element in E is algebraic over F .

Example. Q(
√

2) and Q(
√

3) are algebraic extensions of Q. R is not an algebraic

extension of Q.

Definition 31.2. If an extension field E of field F is of finite dimension n as a

vector space over F , then E is a finite extension of degree n over F . We denote

this as n = [E : F ].

Example. Q(
√

2) is a degree 2 extension of Q since every element of Q(
√

2) is of

the form a +
√

2b where a, b ∈ Q. Q( 3
√

2) is a degree 3 extension of Q since every

element of Q( 3
√

2) is of the form a + b( 3
√

2) + c( 3
√

2)2 for a, b, c ∈ Q. C = R(i) is

a degree 2 extension field of R since every element of C is of the form a + bi for

a, b ∈ R.
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Lemma. Let E be a finite degree extension of F . Then [E : F ] = 1 if and only if

E = F .

Proof. Trivially, {1} is a basis of F (every element of F is of the form a(1) = a

where a ∈ F ). So if E = F then [E : F ] = [F : F ] = 1. Next, if [E : F ] = 1, we

know by Theorem 30.19 that the basis of F , {1}, can be extended to a basis of E

and since [E : F ] = 1, then the basis for E is also {1}. So every element of E is of

the form a(1) = a for a ∈ F . That is, E = F .

Theorem 31.3. A finite (degree) extension field E of field F is an algebraic

extension of F .

Note. The following result “plays a role in field theory analogous to the role of

the theorem of Lagrange in group theory.” (Page 283)

Theorem 31.4. If E is a finite extension field of a field F , and K is a finite

extension field of E, then K is a finite extension of F and [K : F ] = [K : E][E : F ].

Note. The following follows easily from Theorem 31.4 by Mathematical Induction.

Corollary 31.6. If Fi is a field for i = 1, 2, . . . , r and Fi+1 is a finite extension of

Fi, then Fr is a finite extension of F1 and

[Fr : F1] = [Fr : Fr−1][Fr−1 : Fr−2] · · · [F2 : F1].
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Corollary 31.7. If E is an extension field of F , α ∈ E is algebraic over F , and

β ∈ F (α), then deg(β, F ) divides deg(α, F ).

Example 31.8. We can use Corollary 31.7 to quickly show certain elements are

not in an extension field. For example, since deg(
√

2, Q) = 2 and deg( 3
√

2, Q) = 3,

then there is no element of Q(
√

2) that is a zero of x3 − 2 since 3 does not divide

2. Conversely, there is no element of Q( 3
√

2) that is a zero of x2 − 2.

Note. Let E be an extension field of field F . Let α1, α2 ∈ E. By Note 29.1 and

Note 29.2, F (α1) is the smallest extension field of F containing α1. We can iterate

the process to get (F (α1))(α2) as the smallest extension field of F containing both

α1 and α2. (This field is equivalent to (F (α2))(α1).) This field is denoted F (α1, α2).

Definition. Let E be an extension field of field F . Let α1, α2, . . . , αn ∈ E.

F (α1, α2, . . . , αn) is the smallest extension field of F in E containing α1, α2, . . . , αn.

Field F (α1, α2, . . . , αn) is the field that results from adjoining α1, α2, . . . , αn to field

F in E.

Note. One can show that F (α1, α2, . . . , αn) is the intersection of all subfields of E

which contains F and α1, α2, . . . , αn.
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Example 31.9. In Example 31.8, we saw that Q(
√

2) and Q(
√

3) are quite different

(i.e.,
√

2 /∈ Q(
√

3) and
√

3 /∈ Q(
√

2)). So what is Q(
√

2,
√

3)? First, {1,
√

2} is

a basis of Q(
√

2) and Q(
√

2) = {a + b
√

2 | a, b ∈ Q}. So dim(
√

2, Q) = 2. Now,

let’s adjoin
√

3 to Q(
√

2). We claim {1,
√

3} is a basis for (Q(
√

2))(
√

3). Then as

illustrated in the proof of Theorem 31.4, a basis for Q(
√

2,
√

3) is {1,
√

2,
√

3,
√

6}.
So [Q(

√
2,
√

3) : Q] = 4 and

Q(
√

2,
√

3) = {a + b
√

2 + c
√

3 + d
√

6 | a, b, c, d ∈ Q}.

The text argues that p(x) = x4−10x2+1 is irreducible over Q and that
√

2+
√

3 is a

zero of p(x). Notice
√

2+
√

3 ∈ Q(
√

2,
√

3) and the degree of p is 4 = [Q(
√

2,
√

3) :

Q].

Theorem 31.11. Let E be an algebraic extension of a field F . Then there exists

a finite number of elements α1, α2, . . . , αn in E such that E = F (α1, α2, . . . , αm) if

and only if E is a finite dimensional vector space over F (i.e., if and only if E is a

finite extension of F ).

Note. We now define the “algebraic closure” of a field F which is, in a sense, the

largest field containing F which includes F and all zeros of polynomials in F [x]. We

give a proof of the Fundamental Theorem of Algebra (based on complex analysis),

and conclude this section in a supplement that gives a lengthy demonstration that

any field has an algebraic closure.
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Theorem 31.12. If E is an extension field of field F then

FE = {α ∈ E | α is algebraic over F}

is a subfield of E, called the algebraic closure of F in E.

Corollary 31.13. The set of all algebraic numbers over Q in C forms a field.

Note. It is also true that the algebraic numbers over Q in R form a field. In fact,

the (complex) algebraic numbers A over Q form an algebraically closed field (see

Exercise 31.33).

Definition 31.14. A field F is algebraically closed if every nonconstant polynomial

in F [x] has a zero in F .

Note. The next result gives a cleaner classification of an algebraically closed field.

Theorem 31.15. A field F is algebraically closed if and only if every nonconstant

polynomial in F [x] factors in F [x] into linear factors.

Note. The next result gives us the “largest field” idea in detail.

Corollary 31.16. An algebraically closed field F has no proper algebraic exten-

sions; that is, no algebraic extensions E with F < E.
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Note. The following result is a big deal and should probably be part of the book’s

“basic goal.” The proof requires some heavy duty equipment and we give it in a

supplement.

Theorem 31.17/31.22. Every field F has an algebraic closure; that is, an alge-

braic extension F that is algebraically closed.

Note. We now state and prove the Fundamental Theorem of Algebra (another

big “goal” of this class). We will give a proof based on complex analysis. The

text says (page 288) “There are algebraic proofs, but they are much longer.” In

fact, there are no purely algebraic proofs [A History of Abstract Algebra, Israel

Kleiner, Birkhäuser (2007), page 12]. There are proofs which are mostly alge-

braic, but which borrow two results from analysis: (A) A positive real number

has a square root; and (B) An odd degree polynomial in R[x] has a real zero.

((A) follows from the Axiom of Completeness of R, and (B) follows from the

Intermediate Value Theorem, which is also based on the Axiom of Complete-

ness.) However, if we are going to use a result from analysis, the easiest ap-

proach is to use Liouville’s Theorem from complex analysis. We give a few more

details than the text, but for a complete treatment of a proof based on Liou-

ville’s Theorem, see my Complex Analysis (MATH 5510, MATH 5520) notes on-

line: http://faculty.etsu.edu/gardnerr/5510/notes.htm (see Sections IV.3

and V.3). For a mostly algebraic proof, see my online notes for Modern Algebra 1

[MATH 5410]: http://faculty.etsu.edu/gardnerr/5410/notes/V-3-A.pdf



VI.31 Algebraic Extensions 7

Philosophical Note. Should the Fundamental Theorem of Algebra be called the

“Fundamental Theorem of Algebra” when there is no purely algebraic proof?

Definition. A function f : C → C is analytic at a point z0 ∈ C if the derivative of

f(z), f ′(z), is continuous at z0. f is an entire function if it is analytic for all z0 in

the entire complex plane (i.e., for all z0 ∈ C).

Theorem. Liouville’s Theorem.

If f : C → C is an entire function and f is bounded on C (i.e., there exists b ∈ R

such that |f(z)| ≤ b for all z ∈ C), then f is a constant function.

Note. So Liouville’s Theorem says that there are no bounded analytic functions

of a complex variable! (Well, other than constant functions.) This is certainly not

the case for real valued functions of a real variable x—consider f(x) = sin x. We

have | sin x| ≤ 1 for all x ∈ R. Surprisingly, f(z) = sin z is an unbounded function

in the complex plane.

Claim 1. If f(z) ∈ C[z] is a nonconstant polynomial (so f(z) /∈ C), then

lim
|z|→∞

|f(z)| = ∞ and lim
|z|→∞

1

|f(z)| = 0.

Claim 2. Let f : C → C be an entire function where f has no zeros in C (i.e.,

f(z) 6= 0 for all z ∈ C). Suppose lim
|z|→∞

1

|f(z)| = 0. Then f is constant in C.
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Idea of the Proof. If lim
|z|→∞

1

|f(z)| = 0, then for |z| sufficiently large, 1
|f(z)| ≤ 1

(say this holds for |z| > R). Since f has no zeros in C, then 1/f(z) is continuous.

So |1/f(z)| has a maximum value on the compact set |z| ≤ R (this is the Extreme

Value Theorem), say M . Then |1/f(z)| is bounded by max{1,M} and so by

Liouville’s Theorem, 1/f(z) is constant and hence f(z) is constant. �

Theorem 31.18. Fundamental Theorem of Algebra.

The field C is algebraically closed.

Proof. Let f(z) ∈ C[z] be a nonconstant polynomial. Assume f has no zero in C.

Then 1/f(z) is an entire function and by Claim 1, lim
|z|→∞

1

|f(z)| = 0. By Claim 2,

f(z) is constant, a contradiction. This contradiction implies that the assumption

that f(z) has no zero is false. So f(z) has a zero in C and C is algebraically closed.

Note. We now introduce the ideas necessary to prove that every field has an

algebraic closure (Theorem 31.17/31.22). We need some ideas from set theory.

This material is given in supplemental notes.

Note. In Section 49 we will see that the algebraic closure of a field is unique in

the following sense:

Corollary 49.5. Let F and F
′
be two algebraic closures of F . Then F is isomor-

phic to F
′
under an isomorphism leaving each element of F fixed.
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Note. If we start with field Q, then we have that Q ⊂ A (where A is the field of

algebraic complex numbers) and Q ⊂ C. Both A and C are algebraically closed—

A is algebraically closed by Exercise 31.33, and C is algebraically closed by the

Fundamental Theorem of Algebra (Theorem 31.18). An algebraic closure (or the

algebraic closure, after we prove Corollary 49.5) of Q is A. The complex numbers

C are an algebraically closed extension field of Q, but C is not an algebraic closure

of Q since C is not an algebraic extension of Q.
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