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Section VI1.31. Algebraic Extensions

Note. In the past we have only discussed the extension of a field either abstractly
or by a single element at a time (eg., Q(v/2)). We generalize this idea in this
section. We also introduce the idea of algebraic closure, give a brief proof based on
complex analysis which shows that C is algebraically closed, and then show that

every field has an algebraically closed extension field.

Definition 31.1. An extension field E of field F' is an algebraic extension of I if

every element in F is algebraic over F'.

Example. Q(v/2) and Q(+/3) are algebraic extensions of Q. R is not an algebraic

extension of Q.

Definition 31.2. If an extension field F of field F' is of finite dimension n as a

vector space over F', then E is a finite extension of degree n over . We denote

thisas n = [E : F].

Example. Q(v/2) is a degree 2 extension of Q since every element of Q(1/2) is of
the form a + v/2b where a,b € Q. Q(v/2) is a degree 3 extension of Q since every
element of Q(+/2) is of the form a + b(3/2) + ¢(v/2)? for a,b,c € Q. C = R(4) is
a degree 2 extension field of R since every element of C is of the form a + bi for

a,beR.
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Lemma. Let F be a finite degree extension of F'. Then [E : F| = 1 if and only if
E=F.

Proof. Trivially, {1} is a basis of F' (every element of F' is of the form a(1l) = a
where a € F). Soif E = F then [F: F| = [F : F] = 1. Next, if [F: F] =1, we
know by Theorem 30.19 that the basis of F', {1}, can be extended to a basis of £
and since [E : F] = 1, then the basis for F is also {1}. So every element of E is of
the form a(1) = a for a € F. That is, £ = F. 1

Theorem 31.3. A finite (degree) extension field E of field F' is an algebraic

extension of F.

Note. The following result “plays a role in field theory analogous to the role of

the theorem of Lagrange in group theory.” (Page 283)

Theorem 31.4. If F is a finite extension field of a field F', and K is a finite
extension field of E, then K is a finite extension of F' and [K : F] = [K : E|[F : F].

Note. The following follows easily from Theorem 31.4 by Mathematical Induction.

Corollary 31.6. If F; is a field for : = 1,2,...,r and F;,; is a finite extension of

F;, then F, is a finite extension of F| and

[Fr . Fl] = [Fr . Fr—l][Fr—l . FT_Q] cee [FQ . Fl]



VI1.31 Algebraic Extensions 3

Corollary 31.7. If E is an extension field of F', o € E is algebraic over F', and
B € F(a), then deg(8, F') divides deg(a, F').

Example 31.8. We can use Corollary 31.7 to quickly show certain elements are
not in an extension field. For example, since deg(v/2, Q) = 2 and deg(v/2,Q) = 3,
then there is no element of Q(v/2) that is a zero of 2° — 2 since 3 does not divide

2. Conversely, there is no element of Q(v/2) that is a zero of 2% — 2.

Note. Let E be an extension field of field F'. Let a;, a0 € E. By Note 29.1 and
Note 29.2, F'(c) is the smallest extension field of F' containing ;. We can iterate

the process to get (F'(a1))(az) as the smallest extension field of F' containing both
ag and as. (This field is equivalent to (F'(as))(«1).) This field is denoted F'(aq, as).

Definition. Let E be an extension field of field F. Let aj,a9,...,qa, € E.
F(aq,as,...,q,) is the smallest extension field of F'in E containing oy, o, .. ., ay,.

Field F(aq, ag, ..., a,) is the field that results from adjoining oy, as, . .., a, to field
Fin E.

Note. One can show that F'(aq,aq,...,a,) is the intersection of all subfields of £

which contains F' and aq, ao, ..., a,.
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Example 31.9. In Example 31.8, we saw that Q(v/2) and Q(v/3) are quite different
(ie., V2 ¢ Q(+/3) and V3 ¢ Q(+/2)). So what is Q(v/2,v/3)? First, {1,v/2} is
a basis of Q(v/2) and Q(v/2) = {a +bv2 | a,b € Q}. So dim(v/2,Q) = 2. Now,
let’s adjoin v/3 to Q(v/2). We claim {1,+/3} is a basis for (Q(v/2))(v/3). Then as
illustrated in the proof of Theorem 31.4, a basis for Q(v/2, v/3) is {1,v2,v/3, V6.
So [Q(v/2,v/3) : Q] = 4 and

Q(V2,V3) = {a+ V2 + V3 +dV6 | a,b,c,d € Q}.

The text argues that p(x) = 2* —102%+1 is irreducible over Q and that v/24+/3 is a
zero of p(z). Notice v/2+ /3 € Q(v/2,v/3) and the degree of p is 4 = [Q(+v/2,V3) :
Q).

Theorem 31.11. Let E be an algebraic extension of a field F'. Then there exists
a finite number of elements a1, as, ..., a, in E such that £ = F(ay, ag, ..., ) if
and only if F is a finite dimensional vector space over F' (i.e., if and only if E is a

finite extension of F).

Note. We now define the “algebraic closure” of a field ' which is, in a sense, the
largest field containing F' which includes F and all zeros of polynomials in F'[x]. We
give a proof of the Fundamental Theorem of Algebra (based on complex analysis),
and conclude this section in a supplement that gives a lengthy demonstration that

any field has an algebraic closure.
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Theorem 31.12. If F is an extension field of field F' then
Fr ={a € E | a is algebraic over F'}

is a subfield of E, called the algebraic closure of F' in E.

Corollary 31.13. The set of all algebraic numbers over Q in C forms a field.

Note. It is also true that the algebraic numbers over QQ in R form a field. In fact,
the (complex) algebraic numbers A over Q form an algebraically closed field (see

Exercise 31.33).

Definition 31.14. A field F'is algebraically closed if every nonconstant polynomial

in F[z] has a zero in F.

Note. The next result gives a cleaner classification of an algebraically closed field.

Theorem 31.15. A field F is algebraically closed if and only if every nonconstant

polynomial in F[x] factors in F[z] into linear factors.

Note. The next result gives us the “largest field” idea in detail.

Corollary 31.16. An algebraically closed field F' has no proper algebraic exten-

sions; that is, no algebraic extensions E with F' < E.
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Note. The following result is a big deal and should probably be part of the book’s
“basic goal.” The proof requires some heavy duty equipment and we give it in a

supplement.

Theorem 31.17/31.22. Every field F' has an algebraic closure; that is, an alge-

braic extension F that is algebraically closed.

Note. We now state and prove the Fundamental Theorem of Algebra (another
big “goal” of this class). We will give a proof based on complex analysis. The
text says (page 288) “There are algebraic proofs, but they are much longer.” In
fact, there are no purely algebraic proofs [A History of Abstract Algebra, Israel
Kleiner, Birkh&duser (2007), page 12]. There are proofs which are mostly alge-
braic, but which borrow two results from analysis: (A) A positive real number
has a square root; and (B) An odd degree polynomial in R[z] has a real zero.
((A) follows from the Axiom of Completeness of R, and (B) follows from the
Intermediate Value Theorem, which is also based on the Axiom of Complete-
ness.) However, if we are going to use a result from analysis, the easiest ap-
proach is to use Liouville’s Theorem from complex analysis. We give a few more
details than the text, but for a complete treatment of a proof based on Liou-
ville’s Theorem, see my Complex Analysis (MATH 5510, MATH 5520) notes on-
line: http://faculty.etsu.edu/gardnerr/5510/notes.htm (see Sections 1V.3
and V.3). For a mostly algebraic proof, see my online notes for Modern Algebra 1

[MATH 5410]: http://faculty.etsu.edu/gardnerr/5410/notes/V-3-A.pdf
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Philosophical Note. Should the Fundamental Theorem of Algebra be called the

“Fundamental Theorem of Algebra” when there is no purely algebraic proof?

Definition. A function f : C — C is analytic at a point zy € C if the derivative of
f(2), f'(2), is continuous at zy. f is an entire function if it is analytic for all z; in

the entire complex plane (i.e., for all zy € C).

Theorem. Liouville’s Theorem.
If f:C — C is an entire function and f is bounded on C (i.e., there exists b € R

such that |f(2)| < b for all z € C), then f is a constant function.

Note. So Liouville’s Theorem says that there are no bounded analytic functions
of a complex variable! (Well, other than constant functions.) This is certainly not
the case for real valued functions of a real variable z—consider f(z) = sinz. We
have |sinz| < 1 for all z € R. Surprisingly, f(z) = sin z is an unbounded function

in the complex plane.

Claim 1. If f(z) € C|z] is a nonconstant polynomial (so f(z) ¢ C), then

1
|1|1inoo|f( A= z|~oo|f( )N

Claim 2. Let f : C — C be an entire function where f has no zeros in C (i.e.,

f(z) #0 for all z € C).

= 0. Then f is constant in C.

1
|2l—00 | f(2)]
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Idea of the Proof. If |z1|iinoowlz)| = 0, then for |z| sufficiently large, ﬁ <1
(say this holds for |z| > R). Since f has no zeros in C, then 1/f(z) is continuous.
So |1/f(z)| has a maximum value on the compact set |z| < R (this is the Extreme
Value Theorem), say M. Then |1/f(z)| is bounded by max{1, M} and so by

Liouville’s Theorem, 1/f(z) is constant and hence f(z) is constant. [J

Theorem 31.18. Fundamental Theorem of Algebra.
The field C is algebraically closed.

Proof. Let f(z) € C|z] be a nonconstant polynomial. Assume f has no zero in C.

Then 1/f(z) is an entire function and by Claim 1, lim = 0. By Claim 2,

1
o= [ ()]
f(2) is constant, a contradiction. This contradiction implies that the assumption
that f(z) has no zero is false. So f(z) has a zero in C and C is algebraically closed.

Note. We now introduce the ideas necessary to prove that every field has an
algebraic closure (Theorem 31.17/31.22). We need some ideas from set theory.

This material is given in supplemental notes.

Note. In Section 49 we will see that the algebraic closure of a field is unique in
the following sense:
Corollary 49.5. Let F and F be two algebraic closures of F. Then F is isomor-

phic to F under an isomorphism leaving each element of F' fixed.
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Note. If we start with field Q, then we have that Q C A (where A is the field of
algebraic complex numbers) and Q C C. Both A and C are algebraically closed—
A is algebraically closed by Exercise 31.33, and C is algebraically closed by the
Fundamental Theorem of Algebra (Theorem 31.18). An algebraic closure (or the
algebraic closure, after we prove Corollary 49.5) of Q is A. The complex numbers
C are an algebraically closed extension field of O, but C is not an algebraic closure

of Q since C is not an algebraic extension of Q.
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