Section VI.31. Algebraic Extensions

Note. In the past we have only discussed the extension of a field either abstractly or by a single element at a time (eg., $\mathbb{Q}(\sqrt{2})$). We generalize this idea in this section. We also introduce the idea of algebraic closure, give a brief proof based on complex analysis which shows that $\mathbb C$ is algebraically closed, and then show that every field has an algebraically closed extension field.

Definition 31.1. An extension field E of field F is an *algebraic extension* of F if every element in E is algebraic over F .

Example. $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are algebraic extensions of \mathbb{Q} . \mathbb{R} is not an algebraic extension of Q.

Definition 31.2. If an extension field E of field F is of finite dimension n as a vector space over F , then E is a *finite extension of degree n over* F . We denote this as $n = [E : F]$.

Example. $\mathbb{Q}(\sqrt{2})$ is a degree 2 extension of \mathbb{Q} since every element of $\mathbb{Q}(\sqrt{2})$ is of the form $a + \sqrt{2}b$ where $a, b \in \mathbb{Q}$. $\mathbb{Q}(\sqrt[3]{2})$ is a degree 3 extension of \mathbb{Q} since every element of $\mathbb{Q}(\sqrt[3]{2})$ is of the form $a + b(\sqrt[3]{2}) + c(\sqrt[3]{2})^2$ for $a, b, c \in \mathbb{Q}$. $\mathbb{C} = \mathbb{R}(i)$ is a degree 2 extension field of R since every element of C is of the form $a + bi$ for $a, b \in \mathbb{R}$.

Lemma. Let E be a finite degree extension of F. Then $[E : F] = 1$ if and only if $E = F$.

Proof. Trivially, $\{1\}$ is a basis of F (every element of F is of the form $a(1) = a$ where $a \in F$). So if $E = F$ then $[E : F] = [F : F] = 1$. Next, if $[E : F] = 1$, we know by Theorem 30.19 that the basis of F , $\{1\}$, can be extended to a basis of E and since $[E : F] = 1$, then the basis for E is also $\{1\}$. So every element of E is of the form $a(1) = a$ for $a \in F$. That is, $E = F$. П

Theorem 31.3. A finite (degree) extension field E of field F is an algebraic extension of F.

Note. The following result "plays a role in field theory analogous to the role of the theorem of Lagrange in group theory." (Page 283)

Theorem 31.4. If E is a finite extension field of a field F , and K is a finite extension field of E, then K is a finite extension of F and $[K : F] = [K : E][E : F]$.

Note. The following follows easily from Theorem 31.4 by Mathematical Induction.

Corollary 31.6. If F_i is a field for $i = 1, 2, ..., r$ and F_{i+1} is a finite extension of F_i , then F_r is a finite extension of F_1 and

$$
[F_r : F_1] = [F_r : F_{r-1}][F_{r-1} : F_{r-2}] \cdots [F_2 : F_1].
$$

Corollary 31.7. If E is an extension field of F, $\alpha \in E$ is algebraic over F, and $\beta \in F(\alpha)$, then deg(β , F) divides deg(α , F).

Example 31.8. We can use Corollary 31.7 to quickly show certain elements are not in an extension field. For example, since $\deg(\sqrt{2}, \mathbb{Q}) = 2$ and $\deg(\sqrt[3]{2}, \mathbb{Q}) = 3$, then there is no element of $\mathbb{Q}(\sqrt{2})$ that is a zero of $x^3 - 2$ since 3 does not divide 2. Conversely, there is no element of $\mathbb{Q}(\sqrt[3]{2})$ that is a zero of $x^2 - 2$.

Note. Let E be an extension field of field F. Let $\alpha_1, \alpha_2 \in E$. By Note 29.1 and Note 29.2, $F(\alpha_1)$ is the smallest extension field of F containing α_1 . We can iterate the process to get $(F(\alpha_1))(\alpha_2)$ as the smallest extension field of F containing both α_1 and α_2 . (This field is equivalent to $(F(\alpha_2))(\alpha_1)$.) This field is denoted $F(\alpha_1, \alpha_2)$.

Definition. Let E be an extension field of field F. Let $\alpha_1, \alpha_2, \ldots, \alpha_n \in E$. $F(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is the smallest extension field of F in E containing $\alpha_1, \alpha_2, \ldots, \alpha_n$. Field $F(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is the field that results from *adjoining* $\alpha_1, \alpha_2, \ldots, \alpha_n$ to field $\cal F$ in $\cal E.$

Note. One can show that $F(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is the intersection of all subfields of E which contains F and $\alpha_1, \alpha_2, \ldots, \alpha_n$.

Example 31.9. In Example 31.8, we saw that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are quite different (i.e., $\sqrt{2} \notin \mathbb{Q}(\sqrt{3})$ and $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$). So what is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$? First, $\{1, \sqrt{2}\}$ is a basis of $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\)$. So $\dim(\sqrt{2}, \mathbb{Q}) = 2$. Now, let's adjoin $\sqrt{3}$ to $\mathbb{Q}(\sqrt{2})$. We claim $\{1, \sqrt{3}\}\$ is a basis for $(\mathbb{Q}(\sqrt{2}))(\sqrt{3})$. Then as illustrated in the proof of Theorem 31.4, a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}.$ So $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$ and

$$
\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}.
$$

The text argues that $p(x) = x^4 - 10x^2 + 1$ is irreducible over Q and that $\sqrt{2} + \sqrt{3}$ is a zero of $p(x)$. Notice $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and the degree of p is $4 = [\mathbb{Q}(\sqrt{2}, \sqrt{3})$: Q].

Theorem 31.11. Let E be an algebraic extension of a field F . Then there exists a finite number of elements $\alpha_1, \alpha_2, \ldots, \alpha_n$ in E such that $E = F(\alpha_1, \alpha_2, \ldots, \alpha_m)$ if and only if E is a finite dimensional vector space over F (i.e., if and only if E is a finite extension of F).

Note. We now define the "algebraic closure" of a field F which is, in a sense, the largest field containing F which includes F and all zeros of polynomials in $F[x]$. We give a proof of the Fundamental Theorem of Algebra (based on complex analysis), and conclude this section in a supplement that gives a lengthy demonstration that any field has an algebraic closure.

Theorem 31.12. If E is an extension field of field F then

$$
\overline{F}_E = \{ \alpha \in E \mid \alpha \text{ is algebraic over } F \}
$$

is a subfield of E , called the *algebraic closure of* F in E .

Corollary 31.13. The set of all algebraic numbers over $\mathbb Q$ in $\mathbb C$ forms a field.

Note. It is also true that the algebraic numbers over $\mathbb Q$ in $\mathbb R$ form a field. In fact, the (complex) algebraic numbers A over Q form an algebraically closed field (see Exercise 31.33).

Definition 31.14. A field F is algebraically closed if every nonconstant polynomial in $F[x]$ has a zero in F .

Note. The next result gives a cleaner classification of an algebraically closed field.

Theorem 31.15. A field F is algebraically closed if and only if every nonconstant polynomial in $F[x]$ factors in $F[x]$ into linear factors.

Note. The next result gives us the "largest field" idea in detail.

Corollary 31.16. An algebraically closed field F has no proper algebraic extensions; that is, no algebraic extensions E with $F < E$.

Note. The following result is a big deal and should probably be part of the book's "basic goal." The proof requires some heavy duty equipment and we give it in a supplement.

Theorem 31.17/31.22. Every field F has an *algebraic closure*; that is, an algebraic extension \overline{F} that is algebraically closed.

Note. We now state and prove the Fundamental Theorem of Algebra (another big "goal" of this class). We will give a proof based on complex analysis. The text says (page 288) "There are algebraic proofs, but they are much longer." In fact, there are no *purely* algebraic proofs [A History of Abstract Algebra, Israel Kleiner, Birkhäuser (2007), page 12. There are proofs which are mostly algebraic, but which borrow two results from analysis: (A) A positive real number has a square root; and (B) An odd degree polynomial in $\mathbb{R}[x]$ has a real zero. $((A)$ follows from the Axiom of Completeness of R, and (B) follows from the Intermediate Value Theorem, which is also based on the Axiom of Completeness.) However, if we are going to use a result from analysis, the easiest approach is to use Liouville's Theorem from complex analysis. We give a few more details than the text, but for a complete treatment of a proof based on Liouville's Theorem, see my Complex Analysis (MATH 5510, MATH 5520) notes online: http://faculty.etsu.edu/gardnerr/5510/notes.htm (see Sections IV.3 and V.3). For a mostly algebraic proof, see my online notes for Modern Algebra 1 [MATH 5410]: http://faculty.etsu.edu/gardnerr/5410/notes/V-3-A.pdf

Philosophical Note. Should the Fundamental Theorem of Algebra be called the "Fundamental Theorem of Algebra" when there is no purely algebraic proof?

Definition. A function $f : \mathbb{C} \to \mathbb{C}$ is analytic at a point $z_0 \in \mathbb{C}$ if the derivative of $f(z)$, $f'(z)$, is continuous at z_0 . f is an *entire function* if it is analytic for all z_0 in the entire complex plane (i.e., for all $z_0 \in \mathbb{C}$).

Theorem. Liouville's Theorem.

If $f: \mathbb{C} \to \mathbb{C}$ is an entire function and f is bounded on \mathbb{C} (i.e., there exists $b \in \mathbb{R}$ such that $|f(z)| \leq b$ for all $z \in \mathbb{C}$, then f is a constant function.

Note. So Liouville's Theorem says that there are no bounded analytic functions of a complex variable! (Well, other than constant functions.) This is certainly not the case for real valued functions of a real variable x—consider $f(x) = \sin x$. We have $|\sin x| \leq 1$ for all $x \in \mathbb{R}$. Surprisingly, $f(z) = \sin z$ is an unbounded function in the complex plane.

Claim 1. If $f(z) \in \mathbb{C}[z]$ is a nonconstant polynomial (so $f(z) \notin \mathbb{C}$), then

$$
\lim_{|z| \to \infty} |f(z)| = \infty \text{ and } \lim_{|z| \to \infty} \frac{1}{|f(z)|} = 0.
$$

Claim 2. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function where f has no zeros in \mathbb{C} (i.e., $f(z) \neq 0$ for all $z \in \mathbb{C}$). Suppose $\lim_{|z| \to \infty}$ 1 $|f(z)|$ $= 0$. Then f is constant in \mathbb{C} .

Idea of the Proof. If lim $|z|\rightarrow\infty$ 1 $|f(z)|$ $= 0$, then for |z| sufficiently large, $\frac{1}{|f(z)|} \leq 1$ (say this holds for $|z| > R$). Since f has no zeros in C, then $1/f(z)$ is continuous. So $|1/f(z)|$ has a maximum value on the compact set $|z| \leq R$ (this is the Extreme Value Theorem), say M. Then $|1/f(z)|$ is bounded by $\max\{1, M\}$ and so by Liouville's Theorem, $1/f(z)$ is constant and hence $f(z)$ is constant. \Box

Theorem 31.18. Fundamental Theorem of Algebra.

The field $\mathbb C$ is algebraically closed.

Proof. Let $f(z) \in \mathbb{C}[z]$ be a nonconstant polynomial. Assume f has no zero in \mathbb{C} . 1 Then $1/f(z)$ is an entire function and by Claim 1, lim $= 0$. By Claim 2, $\left|f(z)\right|$ $|z| \rightarrow \infty$ $f(z)$ is constant, a contradiction. This contradiction implies that the assumption that $f(z)$ has no zero is false. So $f(z)$ has a zero in $\mathbb C$ and $\mathbb C$ is algebraically closed. П

Note. We now introduce the ideas necessary to prove that every field has an algebraic closure (Theorem 31.17/31.22). We need some ideas from set theory. This material is given in supplemental notes.

Note. In Section 49 we will see that the algebraic closure of a field is unique in the following sense:

Corollary 49.5. Let \overline{F} and \overline{F}' be two algebraic closures of F. Then \overline{F} is isomorphic to \overline{F}' under an isomorphism leaving each element of F fixed.

Note. If we start with field \mathbb{Q} , then we have that $\mathbb{Q} \subset \mathbb{A}$ (where \mathbb{A} is the field of algebraic complex numbers) and $\mathbb{Q} \subset \mathbb{C}$. Both A and \mathbb{C} are algebraically closed— A is algebraically closed by Exercise 31.33, and $\mathbb C$ is algebraically closed by the Fundamental Theorem of Algebra (Theorem 31.18). An algebraic closure (or the algebraic closure, after we prove Corollary 49.5) of $\mathbb Q$ is A. The complex numbers $\mathbb C$ are an algebraically closed extension field of $\mathbb Q$, but $\mathbb C$ is not an algebraic closure of $\mathbb Q$ since $\mathbb C$ is not an *algebraic extension* of $\mathbb Q$.

Revised: 3/21/2015