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Section VI.33. Finite Fields

Note. In this section, finite fields are completely classified. For every prime p and

n ∈ N, there is exactly one (up to isomorphism) field of order pn, called the Galois

field of order pn, denoted GF (pn). These are the only finite fields.

Theorem 33.1. Let E be a finite extension of degree n over a finite field F . If F

has q elements, then E has qn elements.

Note. Recall Definition 19.13: If for a ring R a positive integer n exists such that

n · a = a + a + · · · + a = 0 for all a ∈ R, then the least such positive integer n is

the characteristic of the ring R. If no such n exists then ring R is of characteristic

0. Also, every field is an integral domain (Theorem 19.9) and the characteristic of

an integral domain is either 0 or some prime p (Exercise 19.29).

Lemma 1. If F is a field of characteristic p then F has a subfield isomorphic to

Zp.

Proof. since 1 ∈ F , then 1 is of characteristic p and p · 1 = 1 + 1 + · · ·+ 1 = 0. So

〈1〉 is a subgroup of F under addition isomorphic to 〈Zp,+〉. By Corollary 19.12,

Zp is a field. So F has a subfield isomorphic to Zp.
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Corollary 33.2. If E is a finite field of characteristic p, then E contains exactly

pn elements for some positive integer n.

Proof. By Lemma 1, E has a subfield isomorphic to Zp. So E is a finite extension

field of Zp and by Theorem 33.1 E is of order pn for some n ∈ N.

Theorem 33.3. Let E be a field of pn elements contained in an algebraic closure

Zp of Zp. The elements of E are precisely the zeros in Zp of the polynomial xpn

−x

in Zp[x].

Note. With n = 1 in Theorem 33.3, we see that every element of Zp is a zero of

xp − x. This is because every nonzero element of 〈Zp,+〉 generates 〈Zp, 〉.

Definition 33.4. An element α of a field F is an nth root of unity if αn = 1. it is

a primitive nth root of unity if αn = 1 and αm 6= 1 for 0 < m < n.

Note. The primitive nth roots of unity in field C are each generators of 〈Un, ·〉.

The nonzero elements of a finite field of pn elements are the (pn − 1)th roots of

unity in the field.

Theorem 33.5. Let F be a finite field and let F ∗ be the nonzero elements of F .

The group 〈F ∗, ·〉 is cyclic.

Proof. This is Corollary 23.6 from page 213.
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Corollary 33.6. If finite field E is an extension of a finite field F , then E is a

simple extension of F .

Proof. By Theorem 33.5 the nonzero elements of E form a cyclic multiplicative

group. Let α be a generator of this group. Then E = F (α).

Note. The following humble-looking result is key to the classification of finite

fields.

Lemma 33.8. If F is a field of prime characteristic p with algebraic closure F ,

then xpn

− x has pn distinct zeros in F .

Lemma 33.9. If F is a field of prime characteristic p, then (α + β)pn

= αpn

+ βpn

for all α, β ∈ F and for all n ∈ N.

Note. Now for the classification of finite fields.

Theorem 33.10. A finite field GF (pn) of pn elements exists for every prime power

pn.

Note. We now take a result from Joseph Gallian’s Contemporary Abstract Algebra

8th Edition, Brooks/Cole, 2013 (see Chapter 22). Uniqueness of GF (pn) follows

from this result. Though the result is from Gallian, Fraleigh has given us the

background to prove it.
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Theorem. Structure of Finite Fields.

As a group under addition, the Galois field GF (pn) is isomorphic to Zp⊕Zp⊕· · ·⊕Zp

(n times). That is, elements add as n-tuples of elements of Zp. As a group under

multiplication, the set of nonzero elements of GF (pn) is isomorphic to Zpn−1.

Proof. Every field is an integral domain (Theorem 19.9) and the characteristic

of an integral domain is either 0 or some prime p (Exercise 19.29). So GF (pn)

has characteristic p. (Consider the element 1 and the subgroup it generates under

addition. This subgroup has order the same as the characteristic of 1 and this

subgroup has an order that divides the order of the additive group determined by

GF (pn) (by Lagrange’s Theorem, Theorem 10.10). So the characteristic of 1 is a

prime divisor of pn and so must be p. By Theorem 19.15, this is the characteristic

of the field GF (pn) [and so p is the characteristic of any subfield of GF (pn)]). Since

GF (pn) forms a finite group under addition, then we can apply the Fundamental

Theorem of Finitely Generated Abelian Groups (Theorem 11.12) to it to conclude

that GF (pn) ∼= Zp
n1

1

⊕ Zp
n2

2

⊕ · · · ⊕ Zp
nr

r
for some primes p1, p2, . . . , pr and some

n1, n1, . . . , nr ∈ N. This means that GF (pn) then contains elements of orders

pn1

i , pn2

2
, . . . , pnr

r , but since every element of GF (pn) is of characteristic p, then it

must be that p1 = p2 = · · · = pr = p and n1 = n2 = · · · = nr = 1 (alternatively, we

have that the order of GF (pn) would be pn = pn1

1
pn2

2
· · · pnr

r which implies the same

conditions on the pi and ni). So as an additive group, GF (pn) ∼= Zp⊕Zp⊕· · ·⊕zp

(n times). By Theorem 33.5, the pn − 1 nonzero elements of GF (pn) form a cyclic

group under multiplication and so is isomorphic to Zpn−1 by Theorem 6.10.
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Corollary 1. GF (pn) forms a vector space of dimension n over GF (p). That is,

[GF (pn) : GF (p)] = n.

Proof. Since we know that GF (pn) as an additive group is isomorphic to Zp ⊕

Zp⊕· · ·⊕Zp (n times), then we just need to find a basis for this over GF (P ) ∼= Zp.

A basis of n elements is {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}, and the

result follows.

Corollary 2. Let α be a generator of the group of nonzero elements of GF (pn)

under multiplication. Then α is algebraic over GF (p) of degree n. That is,

deg(α,GF (p)) = n.

Proof. Since α generates all nonzero elements of GF (pn) (under multiplication)

and 0 ∈ GF (p), then GF (p)(α) = GF (pn). So by Corollary 1, [GF (p)(α) :

GF (p)] = [GF (pn) : GF (p)] = n. Also, since α generates all nonzero elements of

GF (pn), then α generates 1 and so αm = 1 for some m ∈ N. Therefore α is algebraic

over GF (p) since α is a zero of p(x) = xm − 1 ∈ GF (p)[x]. If deg(α,GF (p)) = `,

then GF (p)(α) = GF (pn) is an `-dimensional vector space over GF (p) with basis

{1, α, α2, . . . , α`−1} by Theorem 30.23. But all bases of GF (pn) have the same size

by Corollary 30.20, so deg(α,GF (p)) = ` = n.

Corollary 33.11. If F is any finite field, then for every positive integer n, there

is an irreducible polynomial in F [x] of degree n.
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Note. Corollary 33.11 implies that no finite field is algebraically closed!

Note. Fraleigh states in Theorem 33.12 that for any prime p and n ∈ N, if E and

E ′ are fields of order pn, then E ∼= E ′. We have covered this in the Structure of

Finite Fields theorem.

Note. To clarify, by combining Exercise 19.29, Corollary 33.2, Theorem 33.10, and

the Structure of Finite Feilds theorem, we see that:

Fundamental Theorem of Finite Fields. A finite field

of order m exists if and only if m = pn for some prime

p and some n ∈ N. In addition, all fields of order pn are

isomorphic.

Note. We have a clear idea of the structure of finite fields GF (p) since GF (p) ∼= Zp.

However the structure of GF (pn) for n ≥ 1 is unclear. We now give an example of

a finite field of order 16.

Example. (Example 1, page 390 of Gallian.)

We construct GF (16). Of course, GF (16) is of characteristic 2 (by Exercise 19.29—

for details see the proof of the Structure of Finite Fields theorem). So by Lemma 1,

GF (16) has Z2 as a subfield. So we will construct GF (16) as an algebraic extension

field of Z2. By Note 29.1 (or Case I an page 270 of Fraleigh), F [x]/〈irr(α, F )〉 is an

extension field of field F where α /∈ F is algebraic over F . So we want to find an
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irreducible polynomial p(x) ∈ Z2[x] of degree 4. Then the elements of Z2[x]/〈p(x)〉

will be polynomials of degree 3 or less (details to follow) and there will be 24 = 16

such polynomials.

Let p(x) = x4 + x + 1 ∈ Z2[x]. Since neither 0 nor 1 is a zero of p(x) then

it has no linear factors. The only possible quadratic factors are x2 + x + 1 and

x2 + 1, and neither of these is a factor. So p(x) is irreducible. We take the

elements of Z2[x]/〈p(x)〉 to be cosets of 〈p(x)〉 in which addition is done as usual

in Z2[x] but multiplication is done “modulo p(x)” (since the nonzero elements

form a cyclic group under multiplication by the Structure of Finite Fields theorem

and every multiple of p(x) is in 〈p(x)〉). Since products of polynomials will be

reduced modulo p(x) (that is, computed in the usual way but then replaced by

the remainder when the usual product is divided by p(x)), then all elements of

Z2[x]/〈p(x)〉 will be represented by polynomials of degree 3 or less (and hence

there will be 24 = 16 of them). So, in terms of representatives, the elements of

GF (16) are {ax3 + bx2 + cx + d | a, b, c, d ∈ Z2}. We denote these as:

g0 = 0x3 + 0x2 + 0x + 0 g8 = 1x3 + 0x2 + 0x + 0

g1 = 0x3 + 0x2 + 0x + 1 g9 = 1x3 + 0x2 + 0x + 1

g2 = 0x3 + 0x2 + 1x + 0 g10 = 1x3 + 0x2 + 1x + 0

g3 = 0x3 + 0x2 + 1x + 1 g11 = 1x3 + 0x2 + 0x + 1

g4 = 0x3 + 1x2 + 0x + 0 g12 = 1x3 + 1x2 + 0x + 0

g5 = 0x3 + 1x2 + 0x + 1 g13 = 1x3 + 1x2 + 0x + 1

g6 = 0x3 + 1x2 + 1x + 0 g14 = 1x3 + 1x2 + 1x + 0

g7 = 0x3 + 1x2 + 1x + 1 g15 = 1x3 + 1x2 + 1x + 1
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The addition table is then:

+ g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15

g0 g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15

g1 g1 g0 g3 g2 g5 g4 g7 g6 g9 g8 g11 g10 g13 g12 g15 g14

g2 g2 g3 g0 g1 g6 g7 g4 g5 g10 g11 g8 g9 g14 g15 g12 g13

g3 g3 g2 g1 g0 g7 g6 g5 g4 g11 g10 g9 g8 g15 g14 g13 g12

g4 g4 g5 g6 g7 g0 g1 g2 g3 g12 g13 g14 g15 g8 g9 g10 g11

g5 g5 g4 g7 g6 g1 g0 g3 g2 g13 g12 g15 g14 g9 g8 g11 g10

g6 g6 g7 g4 g5 g2 g3 g0 g1 g14 g15 g12 g13 g10 g11 g8 g9

g7 g7 g6 g5 g4 g3 g2 g1 g0 g15 g14 g13 g12 g11 g10 g9 g8

g8 g8 g9 g10 g11 g12 g13 g14 g15 g0 g1 g2 g3 g4 g5 g6 g7

g9 g9 g8 g11 g10 g13 g12 g15 g14 g1 g0 g3 g2 g5 g4 g7 g6

g10 g10 g11 g8 g9 g14 g15 g12 g13 g2 g3 g0 g1 g6 g7 g4 g5

g11 g11 g10 g9 g8 g15 g14 g13 g12 g3 g2 g1 g0 g7 g6 g5 g4

g12 g12 g13 g14 g15 g8 g9 g10 g11 g4 g5 g6 g7 g0 g1 g2 g3

g13 g13 g12 g15 g14 g9 g8 g11 g10 g5 g4 g7 g6 g1 g0 g3 g2

g14 g14 g15 g12 g13 g10 g11 g8 g9 g6 g7 g4 g5 g2 g3 g0 g1

g15 g15 g14 g13 g12 g11 g10 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

Multiplication can be trickier. Consider

g15g11 = (x3 + x2 + x + 1)(x3 + x) = x6 + x5 + x2 + x ≡ x3 + x2 = g12

since in Z2:
x6 + x5 + x2 + x

x4 + x + 1
= x2 + x +

x3 + x2

x4 + x + 1
.

Now we know the nonzero elements of GF (16) form a cyclic group of order 15
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under multiplication. So if we can find a generator of this group, then creation of

a multiplication table is simplified. In this example, g2 = x is a generator since

g2 = x = g2

g2

2
= x2 = g4

g3

2
= x3 = g8

g4

2
= x4 ≡ x + 1 = g3

g5

2 = x(x + 1) = x2 + x = g6

g6

2
= x(x2 + x) = x3 + x2 = g12

g7

2 = x(x3 + x2) = x4 + x3 ≡ x3 + x + 1 = g11

g8

2
= x(x3 + x + 1) = x4 + x2 + x ≡ x2 + 1 = g5

g9

2 = x(x2 + 1) = x3 + x = g10

g10

2
= x(x3 + x) = x4 + x2 ≡ x2 + x + 1 = g7

g11

2 = x(x2 + x + 1) = x3 + x2 + x =14

g12

2
= x(x3 + x2 + x + 1) = x4 + x3 + x2 + x ≡ x3 + x2 + 1 = g15

g13

2
= x(x3 + x2 + x + 1) = x4 + x3 + x2 + x ≡ x3 + x2 + 1 = g13

g14

2
= x(x3 + x2 + 1) = x4 + x3 + x = x3 + 1 = g9

g15

2
= x(x3 + 1) = x4 + 1 ≡ 1 = g1
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Therefore, we get the following multiplication table for GF (16):

· g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15

g0 g0 g0 g0 g0 g0 g0 g0 g0 g0 g0 g0 g0 g0 g0 g0 g0

g1 g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15

g2 g0 g2 g4 g6 g8 g10 g12 g14 g3 g1 g7 g5 g11 g9 g15 g13

g3 g0 g3 g6 g5 g12 g15 g10 g9 g11 g8 g13 g14 g7 g4 g1 g2

g4 g0 g4 g8 g12 g3 g7 g11 g15 g6 g2 g14 g10 g5 g1 g13 g9

g5 g0 g5 g10 g15 g7 g2 g13 g8 g14 g11 g4 g1 g9 g12 g3 g6

g6 g0 g6 g12 g10 g11 g13 g7 g1 g5 g3 g9 g15 g14 g8 g2 g4

g7 g0 g7 g14 g9 g15 g8 g1 g6 g13 g10 g3 g4 g2 g5 g12 g11

g8 g0 g8 g3 g11 g6 g14 g5 g13 g12 g4 g15 g7 g10 g2 g9 g1

g9 g0 g9 g1 g8 g2 g11 g3 g10 g4 g13 g5 g12 g6 g15 g7 g14

g10 g0 g10 g7 g13 g14 g4 g9 g3 g15 g5 g8 g2 g1 g11 g6 g12

g11 g0 g11 g5 g14 g10 g1 g15 g4 g7 g12 g1 g9 g13 g6 g8 g3

g12 g0 g12 g11 g7 g5 g9 g14 g2 g10 g6 g1 g13 g15 g3 g4 g8

g13 g0 g13 g9 g4 g1 g12 g8 g5 g2 g15 g11 g6 g3 g14 g10 g7

g14 g0 g14 g15 g1 g13 g3 g2 g12 g9 g7 g6 g8 g4 g10 g11 g5

g15 g0 g15 g13 g2 g9 g6 g4 g11 g1 g14 g12 g3 g8 g7 g5 g10

We comment that any two irreducible polynomials of the same degree over Zp[z]

yield isomorphic fields through this technique (Gallian, page 392). In this example,

it is a bit of a coincidence that g2 = x is a generator for the nonzero elements of

GF (16)—in fact, the element which generates the nonzero elements is dependent

on the choice of the irreducible polynomial.
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