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Section VII.35. Series of Groups

Note. In this section we introduce a way to consider a type of factorization of a

group into simple factor groups. This idea is similar to factoring a natural number

into prime factors. The big result of this section is the Jordan-Hölder Theorem

which gives an indication of why it is important to classify finite simple groups

(first encountered in Section III.15).

Definition 35.1. A subnormal (or subinvariant) series of a group G is a finite

sequence H0, H1, . . . , Hn of subgroups of G such that Hi < Hi+1 and Hi is a normal

subgroup of Hi+1 (i.e., Hi / Hi+1) with H0 = {e} and Hn = G. A normal (or

invariant) series of group G is a finite sequence H0, H1, . . . , Hn of normal subgroups

of G (i.e., Hi / G) such that Hi < Hi+1, H0 = {e}, and H0 = G.

Note. If Hi is normal in G, then gHi = Hig for all g ∈ G and so Hi is normal in

Hi+1 ≤ G. So every normal series of G is also a subnormal series of G.

Note. If G is an abelian group, then all subgroups of G are normal, so in this case

there is no distinction between a subnormal series and a normal series.

Example. A normal series of Z is:

{0} < 16Z < 8Z < 4Z < Z.
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Example 35.3. The dihedral group on 4 elements D4 has the subnormal series:

{ρ0} < {ρ0, µ1} < {ρ0, ρ2, µ1, µ2} < D4.

This is not a normal series since {ρ0, µ1} is not a normal subgroup of D4. From

Table 8.12 (page 80) we see that

δ1{ρ0, µ1} = {δ1, ρ1} 6= {δ1, ρ3} = {ρ0, µ1}δ1.

Definition 35.4. A subnormal (normal) series {Kj} is a refinement of a subnormal

(normal) series {Hi} of a group G if {Hi} ⊆ {Kj}, that is, if each Hi is one of the

Kj.

Example. A refinement of the normal series of Z given above is

{0} < 64Z < 32Z < 16Z < 8Z < 4Z < 2Z < Z.

Definition 35.6. Two subnormal (normal) series {Hi} and {Kj} of the same group

G are isomorphic if there is a one-to-one correspondence between the collection of

factor groups {Hi+1/Hi} and {Kj+1/Kj} such that corresponding factor groups are

isomorphic.
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Note. The one-to-one correspondence implies that the sets {Hi+1/Hi} and {Kj+1/Kj}

are of the same cardinality. The “corresponding factor groups are isomorphic” does

not imply that the factor groups are isomorphic in order, but that the correspon-

dence is given by the one-to-one correspondence.

Example 35.7. The two series {0} < 〈5〉 < Z15 and {0} < 〈3〉 < Z15 are

isomorphic normal series since the set of factor groups for {0} < 〈5〉 < Z15 is

{Z15/〈5〉 ' Z5, 〈5〉/〈0〉 ' Z3} and the set of factor groups for {0} < 〈3〉 < Z15 is

{Z15/〈3〉 ' Z3, 〈3〉/〈0〉 ' Z5}.

Note. The Schreier Theorem states that any two normal (or subnormal) series of

a group G have refinements which are isomorphic. First, we illustrate this with

an example and then we prove a lemma we will use in the proof of the Schreier

Theorem.

Example 35.8. Consider the two normal series of Z: (1) {0} < 8Z < 4Z < Z and

(2) {0} < 9Z < Z. consider the refinement of (1) {0} < 72Z < 8Z < 4Z < Z and

the refinement of (2) {0} < 72Z < 18Z < 9Z < Z. The four factor groups for both

refinements are

72Z/{0} ∼= 72Z, 8Z/72Z ∼= Z/9Z ∼= Z9,

4Z/8Z ∼= 9Z/18Z ∼= Z2, Z/4Z ∼= 18Z/72Z ∼= Z4.

Notice the factor groups are the same, although they appear in different orders.

So there is a one to one correspondence between the factor groups {Hi+1/Hi} and

{Kj+1/Kj}. That is, the refinements are isomorphic.
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Lemma 35.10. Zassenhaus Lemma/Butterfly Lemma.

Let H and K be subgroups of a group G and let H∗ and K∗ be normal subgroups

of H and K respectively. Then

1. H∗(H ∩ K∗) is a normal subgroup of H∗(H ∩ K),

2. K∗(H∗ ∩ K) is a normal subgroup of K∗(H ∩ K), and

3. H∗(H ∩ K)/H∗(H ∩ K∗) ∼= K∗(H ∩ K)/K∗(H∗ ∩ K)

∼= (H ∩ K)/[(H∗ ∩ K)(H ∩ K∗)].

Note. The following diagrams indicate which groups are subgroups of which, and

therefore why the Zassenhaus Lemma in sometimes called the Butterfly Lemma.

On the surface, there is no motivation for the Zassenhaus Lemma. However, we will

see why we need it in the Schreier Theorem. Now for the proof of the Zassenhaus

Lemma.
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Note. The proof of the Schreier Theorem is constructive. That is, the existence

of an object is claimed and then established by actually building the object.

Theorem 35.11. Schreier Theorem.

Two subnormal (normal) series of a group G have isomorphic refinements.

Definition 35.12. A subnormal series {Hi} of a group G is a composition series if

all the factor groups Hi+1/Hi are simple. A normal series {Hi} of G is a principal

(or chief) series if all the factor groups Hi+1/Hi are simple.



VII.35. Series of Groups 6

Note. If G is an abelian group, then all subgroups are normal and so there is

no difference in a normal series and a subnormal series. So, for an abelian group,

composition series and principal series are the same. For any group G, a normal

series is also a subnormal series, so every principal series is a composition series.

Exercise 35.13. Consider the group Z. We claim there is no composition series

(and hence no principal series, since Z is abelian). If {0} = H0 < H1 < . . . <

Hn−1 < Hn = Z is a subnormal series, then H1 is a proper, nontrivial subgroup of

Z. So H1 = rZ for some r ∈ N, by Corollary 6.7. But then H1/H0 = rZ/{e} ∼= rZ.

However, for the above chain to be a composition series, we must have H1/H0

simple (that is, it has no proper, nontrivial normal subgroup). But (2r)Z is a

proper, nontrivial subgroup of rZ, which is normal since rZ is abelian. Therefore

there is no composition series for Z.

Example 35.14. The series {e} < An < Sn for n ≥ 5 is a composition series of

Sn because An/{e} ∼= An is simple for n ≥ 5 by Exercise 15.39, and Sn/An
∼= Z2,

which is simple. Notice {e} is a normal subgroup of An and of Sn. Also, An is a

normal subgroup of Sn by Exercise 14.24. So the series is both a composition series

and a principal series.
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Note. Recall that (by definition) a maximal normal subgroup of a group G is a

normal subgroup M 6= G such that there is no proper normal subgroup N of G

properly containing M . By Theorem 15.18, M is a maximal normal subgroup of G

if and only if G/M is simple. So for a composition series of group G, each Hi in the

chain must be a maximal subgroup of Hi+1. Hence, to find a composition series of

group G, we need a maximal normal subgroup Hn−2 of Hn−1, and so on until the

process terminates in a finite number of steps at {e}. Since the series consists of

maximal subgroups, a composition series cannot be refined. This does not imply it

is unique since at each step, the maximal normal subgroup may not be unique. To

find a principal series, we similarly look for maximal normal subgroup Hi in Hi+1,

but also need Hi to be normal in G.

Example. Two composition series (and principal series) for Z6 are {0} < {0, 2, 4} <

Z6 and {0} < {0, 3} < Z6. However these two series are isomorphic since both

have associated factor groups (isomorphic to) Z2 and Z3. This is no coincidence,

as shown in the following (the “real meat” of this section, according to Fraleigh).

Theorem 35.15. Jordan-Hölder Theorem.

Any two composition series (or principal series) of a group G are isomorphic.

Proof. Let {Hi} and {Ki} be two composition series (or principal series) of G. By

Theorem 35.11, they have isomorphic refinements. But since all associated factor

groups are simple, by Theorem 15.18 (as commented above), there is no refinement

of the series. So {Hi} and {Ki} must already be isomorphic.
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Note. In the supplement to the notes from Introduction to Modern Algebra 1 on

“Simple Groups” also mentioned the Jordan-Hölder Theorem. The statement then

was:

Jordan-Hölder Theorem. Every finite group G has a composition series

{e} = G0 / G1 / G2 / · · · / Gn−1 / Gn = G

where each group is normal in the next, and the series cannot be refined any further:

in other words, each Gi/Gi−1 is simple.

This statement is from Robert S. Wilson’s The Finite Simple Groups, Graduate

Texts in Mathematics 251 (New York: Springer Verlag, 2009). This version shows

the importance of simple groups and the sense in which they are like prime numbers:

Finite group G is “composed” of the groups in the compositions series and the series

cannot be further refined (just as a prime number cannot be further factored). I

say “composed,” but this term is used in the sense explained in the theorem. It is

tempting to extend the idea further than is allowed (see the next comment)!

Note. Fraleigh describes a composition series “as a type of factorization” of a

group into simple factor groups. However, the term “factorization” should not be

taken in a sense of direct “products.” For example, a composition series for Z4 is

{0} < {0, 2} < Z4 with associated factor groups (isomorphic to) {0, 2}/{0} ∼= Z2

and Z4/{0, 2} ∼= Z2. However,

(Z4/{0, 2}) × ({0, 2}/{0}) 6∼= Z4/{0} ∼= Z4

since the left hand side if Z2 × Z2 which is isomorphic to the Klein 4-group. It is

tempting to think that the {0, 2}’s “cancel,” but this is not the case. The simple

factor groups are not “factors” in this sense of being parts of a direct product.
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Theorem 35.16. If G has a composition series (or principal series) and if N is

a proper normal subgroup of G, then there exists a composition series (principal

series) containing N .

Note. The following concept will play a role in reaching our “final goal” which

concerns solving polynomial equations with radicals in Section X.56.

Definition 35.18. A group G is solvable if it has a composition series {Hi} such

that all factor groups Hi+1/Hi are abelian.

Note. A solvable group has a composition series where all factor groups are abelian.

By the Jordan-Hölder Theorem, all composition series of a solvable group have

abelian factor groups.

Note. Our “final goal” was first proved by Niels Henrik Abel (1802–1829) in 1823.

The fact that Hi+1/Hi are commutative is key to the proof. This is the reason that

Abel’s name is associated with commutative (“abelian”) groups.
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Example 35.19. The group S3 is solvable because the composition series {e} <

A3 < S3 has factor groups A3/{e} ∼= A3
∼= Z3 and S3/A3

∼= Z2, both of which are

abelian. The group S5 is not solvable since the series {e} < A5 < S5 is a composition

series (because A5/{e} ∼= A5 is simple by Theorem 15.15, and S5/A5
∼= Z2 is simple

[it has no proper nontrivial normal subgroups]) but A5/{e} ∼= A5 is not abelian. In

addition, A5 (or order 5!/2 = 60) is also not solvable and is the smallest nonsolvable

group. We will use the fact that A5 is not solvable later to show the “final goal” of

the insolvability of the quintic.
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