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Section VII.36. Sylow Theorems

Note. In this section and the next, we look more closely at results that will help us

classify finite groups. For finite abelian groups, we have the Fundamental Theorem

for Finitely Generated Abelian Groups (Theorem 11.12) and the classification is

complete. For nonabelian groups there is not now (nor likely to be in the near

future) a complete classification of finite nonabelian groups. However, the Sylow

Theorems will give us some perspective on finite groups (especially on the order of

subgroups) and help us in some small way to start to classify simple groups in the

next section.

Note. We need to briefly review some material from Sections 16 and 17 before

looking at the Sylow Theorems.

Note. Section III.16 addresses “Group Action on a Set.” We have already en-

countered this idea when considering the symmetric group on n letters, Sn, and

the group of symmetries of the regular n-gon, Dn (the nth dihedral group). In

these settings, there is a set of elements (either {1, 2, 3, . . . , n} or the vertices of a

regular n-gon) and a group containing “actions” which are performed on the set.

This idea is generalized in the following definition.
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Definition 16.1. Let X be a set and G a group. An action of G on X is a map

∗ : G×X → X such that

1. ex = x for all x ∈ X, and

2. (g1g2)(x) = g1(g2x) for all x ∈ X and all g1, g2 ∈ G.

In this case, X is called a G-set.

Note. Let X be G-set and x ∈ X. Define Gx = {g ∈ G | gx = x}. Theorem 16.12

shows that Gx is a subgroup of group G, called the isotropy subgroup of x. For

g ∈ G, denote Xg = {x ∈ X | gx = x}.

Example 16.6. Let X be the set of vectors in Rn and let G = R∗ (the multiplica-

tive group of nonzero real numbers). Then for all ~v ∈ X and all r, s ∈ G we have

(1) a~v = ~v, and (2) (rs)~v = r(s~v), so X = Rn is a R∗-set.

Theorem 16.14. Let X be a G-set. For x1, x2 ∈ X, let x1 ∼ x2 if and only if

there exists g ∈ G such that gx1 = x2. Then ∼ is an equivalence relation on X.

Note. Recall the importance of an equivalence relation ∼ on set X from Theorem

0.22: The equivalence classes of ∼ partition set X.
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Definition 16.15. Let X be a G-set. Each cell in the partition of the equivalence

relation described in Theorem 16.14 is an orbit in X under G. If x ∈ X, the cell

containing x is the orbit of x, denoted Gx.

Theorem 16.16. Let X be a G-set and let x ∈ X. If |G| is finite, then |Gx| is a

divisor of |G|. Also, |Gx| = (G : Gx).

Note. Section III.17 addresses “Applications of G-Sets to Counting.” The Sy-

low Theorems relate to counting as well and we need the following result and its

corollary. We denote the points fixed by g ∈ G as Xg: Xg = {x ∈ X | gx = x}.

Theorem 17.1. Burnside’s Formula.

Let G be a finite group and X a finite G-set. If r is the number of orbits in X

under G then

r · |G| =
∑
g∈G

|Xg|.

Corollary 17.2. If G is a finite group and X is a finite G-set, then

(The number of orbits in X under G) =
1

|g|
∑
g∈G

|Xg|.

Note. Nothing is implied about the sizes of the orbits in Burnside’s Formula, only

something about the number of the orbits. This should not be confused with the

idea of cosets from Section II.10 in which every coset is of the same size.
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Note. It is surprising that Fraleigh does not include biographical information on

William Burnside (1852–1927).

William Burnside (1852–1927) (from the MacTutor History of Mathematics

Archive)

Burnside published his influential The Theory of Groups of Finite Order in 1897.

The second edition was published in 1911 and included “character theory.” The

second edition was for many decades the standard work in the field. Copies can

be found online at Project Gutenburg and at GoogleBooks (accessed 7/12/2022).

The book is available from Dover Publications for about $10. This book is of

historical interest, but the terminology is not modern. “Because of Burnside’s

emphasis on the abstract approach, many consider him to be the first pure group

theorist” [Joseph Gallian, Contemporary Abstract Algebra, 8th Edition (2013), page

505]. “Burnside’s Conjecture” states that a group G of odd order has a normal

series {e} = G0 ≤ G1 ≤ G2 · · · ≤ Gn = G such that Gi+1/Gi is abelian for

i = 0, 2, . . . , n− 1. Notice that this implies that every finite group of odd order is

solvable. This was proved by Feit and Thompson in 1963. See the supplement on

Finite Simple Groups for more details.

http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www.gutenberg.org/files/40395/40395-pdf.pdf
http://books.google.com/books/about/Theory_of_groups_of_finite_order.html?id=3BsPAAAAIAAJ
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Note. Let X be a finite G-set. For x ∈ X, the orbit of x is Gx = {gx | g ∈ G}

and the orbits partition set X. Let {x1, x2, . . . , xr} be a set containing exactly one

element of X from each orbit in X under G (again, we denote the number of orbits

as r). We then have

|X| =
r∑

i=1

|Gxi|. (1)

Some of the orbits may be of length 1 (that is, we may have gxi = xi for all g ∈ G).

Let XG be the set of all elements in orbits of length 1 (so XG contains the elements

of set X fixed by all elements of group G):

XG = {x ∈ X | gx = x for all g ∈ G}.

With |XG| = s, denote the xi ∈ XG as x1, x2, . . . , xs. Then equation (1) gives

|X| = |XG|+
r∑

i=s+1

|Gxi|. (2)

Note. Fraleigh now develops the Sylow Theorems using the techniques of Thomas

Hungerford (see Algebra, NY: Springer-Verlag, 1974—see Section II.5, pages 92–

96). Fraleigh describes the arguments as “extremely pretty and elegant.”

Theorem 36.1. Let G be a group of order pn and let X be finite G-set. Then

|X| ≡ |XG| (mod p).

Definition 36.2. Let p be prime. A group G is a p-group if every element in G
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has order a power of the prime p. A subgroup of a group G is a p-subgroup of G if

the subgroup is itself a p-group.

Note. The First Sylow Theorem (Theorem 36.8) will show us that finite group G

has a subgroup of every prime-power order which divides |G|. Contrast this with

Lagrange’s Theorem (Theorem 10.10) which implies that the order of a subgroup of

a finite group is a divisor of the order of the group. We know the general converse

of this is not true, as demonstrated in Example 15.6 in which it is shown that A4

(of order 4!/2 = 12) has no subgroup of order 6. What the First Theorem of Sylow

implies is that there is something “special” about prime-power divisors of the group

and the existence of subgroups of these prime power orders. As a first step in this

direction, we have the following.

Theorem 36.3. Cauchy’s Theorem.

Let p be a prime. Let G be a finite group an dlet p divide |G|. Then G has an

element of order p and (consequently) a subgroup of order p.
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Note. The subgroup 〈a〉 of G in the proof of Cauchy’s Theorem (Theorem 36.3) is

a p-subgroup of G. This follows because the elements of 〈a〉 are of the form e = a0

and ak for 1 ≤ k < p. If (ak)m = akm = e then, since the order of a is p, km must

be a multiple of p. The smallest value of m for which this is the case is m = p.

Hence ak is of order p and all elements of 〈a〉 are of order p (except e, which is of

order p0 = 1 [also a power of p]).

Corollary 36.4. Let G be a finite group. Then G is a p-group if and only if |G|

is a power of p.

Note. The proof is to be given in Exercise 36.14. It appears in Hungerford’s

Algebra as the proof of Corollary II.5.3.

Note. For group G, let S denote the set of all subgroups of G. Then S is a G-set

where G acts on S as follows. Define ∗ : G × S → S as h ∗ H = gHg−1 (the

conjugation subgroup of H by g—by Exercise 13.29, gHg−1 is a homomorphism

image of G and so is a subgroup of G under ig : G → G). Consider GH = {g ∈ G |

gHg−1 = H}. By Exercise 36.11, GH is a subgroup of G and by Theorem 14.13(2),

H is a normal subgroup of GH . Since GH consists of all elements of G that leave

H invariant under conjugation (and by Theorem 14.13, gHg−1 = H if and only if

gH = Hg) then GH is the largest subgroup of G having H as a normal subgroup.
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Definition 36.5. Let G be a group and H ≤ G. Define GH = {g ∈ G | gHg−1 =

H}. Then GH is the normalizer of H in G (the largest subgroup of G having H

as a normal subgroup) and is denoted N [H].

Lemma. Let H be a finite subgroup of group G. If ghg−1 ∈ H for all h ∈ H then

g ∈ N [H].

Proof. Let ghg−1 ∈ H for all h ∈ H. Then the conjugation map ig : H → G

defined by ig(H) = gHg−1 actually maps H into H; that is, ig : H → H. Next,

if gh1g
−1 = gh2g

−1 then by cancellation in G, h1 = h2. So ig : H → H is one to

one. Since H is finite and ig is one to one from H to H then ig must be onto. So

ig[H] = gHg−1 = H and g ∈ N [H].

Lemma 36.6. Let H be a p-subgroup of of a finite group G. Then (N [H] : H) =

(G : H) (mod p).

Corollary 36.7. Let H be a p-subgroup of a finite group G. If p divides (G : H),

then N [H] 6= H.

Theorem 36.8. First Sylow Theorem.

Let G be a finite group and let |G| = pnm where n ≥ 1 and where p does not divide

m. Then

1. G contains a subgroup of order pi for each i where 1 ≤ i ≤ n, and

2. Every subgroup H of G of order pi is a normal subgroup of a subgroup of order

pi+1 for 1 ≤ i < n.
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Definition 36.9. A Sylow p-subgroup P of a group G is a maximal p-subgroup of

G, that is a p-subgroup contained in no larger p-subgroup.

Note. By the First Sylow Theorem (Theorem 36.8), is |g| = pnm, the Sylow p-

subgroups of G are the subgroups of order pn. These subgroups are not unique,

but are related by conjugation as given in the Second Sylow Theorem.

Theorem 36.10. Second Sylow Theorem.

Let P1 and P2 be Sylow p-subgroups of a finite group G. Then P1 and P2 are

conjugate subgroups of G. That is, for some g ∈ G we have P2 = gP1g
−1.

Theorem 36.11. Third Sylow Theorem.

If G is a finite group and p divides |G|, then the number of Sylow p-subgroups is

congruent to 1 modulo p and divides |G|.

Example 36.12. To illustrate the Sylow Theorem, consider S3 of order 3! = 6. The

Sylow 2-subgroups (in the notation of Example 8.7) are {ρ0, µ1}, {ρ0, µ2}, {ρ0, µ3}.

With p = 2, we see that there are 3 ≡ 1 (mod 2) such subgroups and 3 divides S3| =

6, thus illustrating the Third Sylow Theorem. With ix representing conjugation by

element x, we can confirm that iρ2
[{ρ0, µ1}] = {ρ0, µ3} and iρ1

[{ρ0, µ1}] = {ρ0, µ2},

thus illustrating the Second Sylow Theorem.
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Note. We will use the Sylow Theorems in Section 37 to help classify certain

finite order groups. In particular, the Second Sylow Theorem can be used to deal

with showing that groups are not simple by allowing us (under certain conditions)

to show that a Sylow p-subgroup is a normal subgroup. We now give two such

examples.

Example 36.13. We claim that no group of order 15 is simple. Suppose group

G is of order 15, |G| = 15. We will show that G has a normal subgroup of order

5. By the First Sylow Theorem (Theorem 36.8), G has at least one subgroup of

order 5 and this is a Sylow p-subgroup (with p = 5). By the Third Sylow Theorem

(Theorem 36.11), the number of such subgroups is congruent to 1 modulo 5 and

divides 15. Now 1 is the only such number, and so G has exactly one subgroup

of order 5, say P . For each g ∈ G, conjugation by g (that is, using the inner

automorphism based on g), ig, of G with ig(x) = gxg−1 maps P onto gPg−1 which

must again be a subgroup of G. Since all elements of the Sylow 5-subgroup P are

of order 5, then all elements of gPg−1 must be of order 5 (notice that gPg−1 is not

the trivial subgroup), so gPg−1 is also a Sylow 5-subgroup. Since P is the only

Sylow 5-subgroup, then P = gPg−1 for all g ∈ G and so P is a normal subgroup

of G. Therefore, G is not simple.

Note. The argument of the previous example is summarized in Exercise 29.12:

“Let G be a finite group and let p be prime. If p divides |G|, but |G| is not a power

of p, and if G has precisely one proper Sylow p-subgroup, then this subgroup is

normal in G. Hence, G is not simple.”
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Example. Every group of order 483 is not simple. Notice that 483 = 3 · 7 · 23. By

the Frist Sylow Theorem (Theorem 36.8), this group G has a Sylow 23-subgroup.

By the Third Sylow Theorem (Theorem 36.11), the number of Sylow 23-subgroups

is 1 modulo 23 and divides |G| = 243. The divisors of 243 which are not multiples

of 23 are 1, 3, 7, and 21. The only one of these which is 1 modulo 23 is 1. So G

has 1 Sylow 23-subgroup. By Exercise 36.12, this subgroup is normal and G is not

simple.

Note. The following two results are closely related to the Sylow Theorems. To-

gether, they allow us to classify (up to isomorphism) groups of order pq where p

and q are both prime. The statements and proofs can be found in Hungerford’s

Algebra (pages 96 and 97).

Proposition II.6.1. (From Hungerford’s Algebra.)

Let p and q be primes such that p > q. If q 6 | p− 1, then every group of order pq is

isomorphic to the cyclic group Zpq. If q | p− 1, then there are (up to isomorphism)

exactly two distinct groups of order pq: the cyclic group Zpq and a nonabelian

group K generated by c and d such that |c| = p, |d| = q, dc = csd where s 6≡ 1

(mod p) and sq ≡ 1 (mod p). (Here, Hungerford uses |c| to denote the order of

element c.)
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Corollary II.6.2. (From Hungerford’s Algebra.)

If p is an odd prime, then every group of order 2p is isomorphic either to the cyclic

group Zpq or the dihedral group Dp.

Note. Hungerford uses the Sylow Theorems and the previous two results to classify

all groups of order 15 or less. See “Supplement: Small Groups” from Introduction

to Modern Algebra (MATH 4127/5127) notes for the results.

Note. Peter Ludvig Sylow (1832–1918) published the three “Sylow Theorems”

of this section in “Théorèmes sur les groupes de substitutions,” Mathematische

Annalen 5 (1872), 584–594. He, like Abel, was from Norway.

In 1862 Sylow lectured at the University of Christiania (Oslo, Norway). In his

lectures Sylow explained Abel’s and Galois’s work on algebraic equations. Between

1873 and 1881 Sylow (with Sophus Lie) he prepared an edition of Abel’s complete

work. After proving Cauchy’s theorem (Theorem 36.3) that a finite group of order

divisible by a prime p has a subgroup of order p, Sylow asked whether it can be

generalized to powers of p. The answer and the results on which Sylow’s fame rests
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are in his 10 page paper published in 1872; almost all work on finite groups uses

Sylow’s theorems. He spent most of his career as a high school teacher in Halden,

Norway. Sylow was awarded an honorary doctorate from the University of Copen-

hagen and taught at Christiania University starting in 1898. This information is

from the MacTutor History of Mathematics Archive.
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