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Section VII.38. Free Abelian Groups

Note. In this section, we define “free abelian group,” which is roughly an abelian

group with a basis. We give examples of such groups and describe properties of the

bases. Finally, we give a proof of the Fundamental Theorem of Finitely Generated

Abelian Groups (Theorem 11.12).

Note. We shall use additive notation in this section, so for n ∈ Z and x ∈ G, nx

denotes 0 if n = 0, x + x + · · ·+ x n-times if n > 0, and (−x) + (−x) + · · ·+ (−x)

|n|-times if n < 0.

Note. Notice that {(1, 0), (0, 1)} is a generating set for group Z × Z. Also, each

element of Z × Z can be uniquely written in the form n(1, 0) + m(0, 1).

Theorem 38.1. Let X be a subset of a nonzero abelian group G. The following

conditions on X are equivalent.

1. Each nonzero element a in G can be expressed uniquely (up to order of sum-

mands) in the form a = n1x1 + n2x2 + · · · + nrzr for ni 6= 0 in Z and distinct

xi ∈ X .

2. X generates G, and n1x1 + n2x2 + · · ·nrzr = 0 for ni ∈ Z and distinct xi ∈ X

if and only if n1 = n2 = · · ·nr = 0.
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Definition 38.2. An abelian group having a generating set X satisfying the

conditions described in Theorem 38.1 (Condition 1 or Condition 2) is a free abelian

group. X is a basis for the group.

Example 38.3. Notice that Z×Z× · · ·×Z (r times) is a free abelian group with

basis {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}.

Example 38.4. The group Zn is not a free abelian group since nx = 0 for every

x ∈ Zn and n 6= 0 contradicting Condition 2. Also, 〈Q,+〉 is not a free abelian

group (see Exercise 38.13).

Note. The previous two examples are suggestive of the Fundamental Theorem

of Finitely Generated Abelian Groups (Theorem 11.12). Example 38.3 is very

suggestive for the structure of a free abelian group with a basis of r elements, as

spelled out in the next theorem. The proof is given in Exercise 38.9.

Theorem 38.5. If G is a nonzero (i.e., G 6= {0}) free abelian group with a basis

of r elements, then G is isomorphic to Z × Z × · · · × Z for r factors.

Note. The previous theorem and the following theorem are reminiscent of the

behavior of vector spaces and their bases.
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Theorem 38.6. Let G 6= {0} be a free abelian group with a finite basis. Then

every basis of G is finite and all bases of G have the same number of elements.

Definition 38.7. If G is a free abelian group, the rank of G is the number of

elements in a basis for G.

Note. Since a free abelian group with a finite basis has the property that all bases

are the same size, then Definition 38.7 makes sense for such groups. In fact, for a

free abelian group with an infinite basis, all bases are of the same cardinality. This

is shown in Hungerford’s Algebra (Theorem II.1.2, page 72).

Note. It is tempting to think of a basis of a vector space as equivalent to a basis of

a free abelian group, and to think of the dimension of a vector space as equivalent

to the rank of a free abelian group. However, in a vector space there are two

operations (vector addition and scalar multiplication), but in an additive group

there is only repeated addition. In an n-dimensional vector space, every set of n

linearly independent vectors form a basis; but in a free abelian group of rank r,

a set of r linearly independent group elements may not form a basis (see Exercise

II.1.2(b) of Hungerford’s Algebra on page 74).

Note. We now turn our attention to the proof of the Fundamental Theorem of

Finitely Generated Abelian Groups (Theorem 11.12). We need three preliminary

theorems first.
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Theorem 38.8. Let G be a finitely generated abelian group with generating set

{a1, a2, . . . , an}. Let φ : Z × Z × · · · × Z → G (where there are n factors of Z) be

defined by φ(h1, h2, . . . , hn) = h1a1 +h2a2 + · · ·+hnan. Then φ is a homomorphism

onto G.

Theorem 38.9. If X = {x1, x2, . . . , xr} is a basis for a free abelian group G and

t ∈ Z, then for i 6= j, the set

Y {x1, x2, . . . , xj−1, xj + txi, xj+1, . . . , xr}

is also a basis for G.

Theorem 38.11. Let G be a nonzero free abelian group of finite rank n, and let K

be a nonzero subgroup of G. Then K is free abelian of rank s ≤ n. Furthermore,

there exists a basis {x1, x2, . . . , xn} for G and positive integers d1, d2, . . . , ds where

di divides di+1 for i = 1, 2, . . . , s − 1, such that {d1x1, d2x2, . . . , dsxs} is a basis for

K.

Note. We now have the equipment to prove the Fundamental Theorem of Finitely

Generated Abelian Groups (Theorem 11.12). We give a proof of an initial result

first, from which the general theorem follows.
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Theorem 38.12. Every finitely generated abelian group is isomorphic to a group

of the form

Zm1
× Zm2

× · · · × Zmr
× Z × Z × · · · × Z

where mi divides mi+1 for i = 1, 2, . . . , r − 1.

Note. Theorem 38.12 gives us the bulk of the Fundamental Theorem of Finitely

Generated Abelian Groups. We now state the full theorem and discuss the proof.

Theorem 11.12. Fundamental Theorem of Finitely Generated Abelian

Groups.

Every finitely generated abelian group G is isomorphic to a direct product of cyclic

groups in the form

Z(p1)r1 × Z(p2)r2 × · · · × Z(pn)rn × Z × Z · · · × Z

where the pi are primes, not necessarily distinct, and the ri are positive integers.

The direct product is unique except for possible rearrangement of the factors; that

is, the number of factors of Z is unique (called the Betti number of G) and the

prime powers (pi)
ri are unique.

Partial Proof. Theorem 38.12 gives us the form of G in terms of a direct product.

By Theorem 11.5 the cyclic groups of Theorem 38.12 can be broken into prime

power factors.

Recall that the torsion subgroup of abelian group G is the subgroup of G

consisting of all elements of G of finite order (see Exercise 11.39, page 112).
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From Theorem 38.12, we see that the torsion subgroup of a finitely generated

abelian group is the direct product of the various Zn’s. Let T represent this

direct product (appended with copies of {0} as needed) and consider G/T (of

course, since G is abelian, then T is a normal subgroup of G). Then G/T is of

the form Z × Z × · · · × Z for some number of copies of Z. The rank of G/T is

the number of copies of Z in this direct product (for example, one basis for G/T

is {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)} and all bases are of the same

size by Theorem 38.6). So the Betti number (the number of copies of Z) is unique

across all such direct product representations (given by Theorem 38.12) of G; the

Betti number is the rank of G/T .

The mi of Theorem 38.12 are called the torsion coefficients of G (see Exercise

11.44, page 113). The torsion coefficients of G are shown to be unique in Exercise

38.20 to 38.22.

The uniqueness of the powers of the primes (the prime powers are “peeled off”

of the m)i, once the uniqueness of the mi is established above) is given in Exercises

38.14 to 38.19. �
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