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Section VII.40. Group Presentations

Note. The idea of group presentation is to give the generators of a group along

with a collection of equations which relates the generators to each other. In this

way, a very large group can be “presented” in a compact form, as opposed to giving

the table for the group (which could be very large). In this section, we define group

presentation, give examples, and illustrate its use in determining the existence or

nonexistence of groups of certain orders.

Example. In the exercises of this section (primarily Exercise 11, but it also involves

other exercises in this section) it is shown that a group with generating set {a, b}

where elements a and b satisfy the three equations a3 = 1, b2 = 1, and ba = a2b

must be isomorphic to S3
∼= A3. That is, a group presentation of S3

∼= A3 is

(a, b : a3 = 1, b2 = 1, ba = a2b).

Note. The ATLAS of Finite Groups by Conway, Curtis, Norton, Parker, and Wil-

son (Oxford: Clarendon Press, 1985) mentioned in my “Small Groups” supplement

to the note of Section 11 gives the presentation of certain very large (but finite)

groups. In particular (as an elementary example), a presentation of A5 is given

on page xviii of the ATLAS as (a, b : a2 = b3 = (ab)5 = 1). So the group A5 is

described using just four pieces of information: (1) there are two generators a and

b, (2) a2 = 1, (3) b3 = 1, and (4) (ab)5 = 1. A group table of the nonabelian A5,

on the other hand, involves |A5|
2 = (60)2 = 3600 entries.
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Note. An online relative of the ALTAS if “ATLAS of Finite Groups—Version

3” and is available online at http://brauer.maths.qmul.ac.uk/Atlas/vs/ (ac-

cessed 3/8/2014). This gives a presentation of the group M11 (a “Mathieu group”—

see my “Finite Simple Groups” supplement to Section 15). The group is of order

|M11| = 7920 and a table for the group would consist of (7920)2 = 62,726,400

entries. The online ATLAS gives a presentation of M11 as (a, b : a2 = 1, b4 =

1, (ab)11 = 1, (ababababbababbabb)4 = 1).

Note. In my supplement “Small Groups” I mentioned the “dicyclic group of order

12.” This group has presentation (a, b : a6 = 1, a3 = b2, b−1ab = a−1) (from

Gallian, page 453). So this gives us some idea of the structure of a group we have

not explored before.

Note. As suggested in the past, dihedral groups are generated by two elements. In

fact (see Exercise 26.9 of Gallian) a group presentation of Dn is (a, b : an = 1, b2 =

1, (ab)2 = 1). In fact, the dihedral group can be classified in terms of the properties

of the generators:

Theorem. Characterization of Dihedral Groups. (Gallian’s Theorem 26.5.)

Any group generated by a pair of elements of order 2 is dihedral.

The two generators here are considered to be b and ab (as opposed to a and b).

Geometrically, b represents a “flip” of the n-gon and a represents a rotation through

2π/n radians (say). For this theorem to be true, we must introduce the infinite

dihedral group D∞ with presentation (a, b : a2 = b2 = 1).
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Example 40.1. Suppose group G has generators xand y and that we impose

the relation xy = yx (or equivalently xyx−1y−1 = 1). Then G is a free abelian

group with basis {x, y}. So by the comments in the last note of Section 39, G ∼=

F [{x, y}]/C where C is the commutator subgroup of F [{x, y}].

Note. Any equation in F [A] can be written in a form where the right-hand side

is 1. For example, the equation ba = a2b in the above presentation of S3
∼= A3 can

be replaced with a−1bab−1 = 1. So a collection of equations in F [A] can be written

as ri = 1 for i ∈ I where ri ∈ F [A] (so ri is a product of powers of the elements

of A). With each ri = 1, then x(rn
i )x−1 = 1 for any x ∈ F [A] and n ∈ Z. Also

any product of elements equal to 1 is again equal to 1. So any finite product of

the form
∏

j xj(r
nj

ij
)x−1

j must equal 1 (where the rij need not be distinct). let R

be the set of all products. Then R is a subgroup of F [A] since 1 ∈ R and for any

product of elements of A which equal 1 has an inverse whose elements multiply to

give 1 (for example, if a2b3 = 1 then b−3a−2 = 1). In fact, R is a normal subgroup

of F [A] since for all f ∈ F [A] we have fR = Rf (since r ∈ R implies r = 1 and so

fr = f · 1 = 1 · f = rf). Then the group F [A]/R is a group (in Fraleigh’s words)

“as much like F [A] as it can be, subject to certain equation that we want satisfied”

(the equations are the ri ∈ R).

Note. Now that we have an intuitive idea of what a group presentation is, we give

the formal definition. However, we will not really use the formal definition in our

applications; the informal idea will suffice for our applications.
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Definition 40.2. Let A be a set and let {ri} ⊆ F [A]. Let R be the least normal

subgroup of F [A] containing the ri. An isomorphism φ of F [A]/R onto a group G

is a presentation of G. The sets A and {ri} give a group presentation. The set A is

the set of generators for the presentation and each ri is a relator. Each r ∈ R is a

consequence of {ri}. An equation ri = 1 is a relation. A finite presentation is one

in which both A and {ri} are finite sets.

Example 40.3. Consider the group presentation (a : a6 = 1). Of course, this

group is isomorphic to Z6 (technically, the group is F [{a}]/{a6}). Now consider

the group with two generators a and b where a2 = 1, b3 = 1, and ab = ba. The

presentation is (a, b : a2 = 1, b3 = 1, aba−1b−1 = 1). Since a2 = 1 then a−1 = a.

Since b3 = 1 then b−1 = b2. Since ab = ba, the group is abelian and every element

is then of the form ambn (where m is 0 or 1 and n = 0, 1, 2). The elements are then

1 = a0b0, a = a−1, b, b2 = b−1, ab, ab2. Since we are dealing with a group of order

6 which is abelian, this must be another presentation of a group isomorphic to Z6.

Definition. When two presentations describe the same group (up to isomorphism),

we have isomorphic presentations.

Note. Fraleigh comments on page 348 that there is no “routine and well-defined

way” of determining, in general, when two group presentations are isomorphic.
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Example 40.5. There is a unique nonabelian group of order 10.

Suppose that G is a nonabelian group of order 10. By the First Sylow Theorem

(Theorem 36.8) G has a subgroup H of order 5. The only group of order 5 up to

isomorphism is Z5 so H is cyclic. Let H = 〈a〉. Notice that by the Third Sylow

Theorem (Theorem 36.11) H is a normal subgroup of G. So G/H exists and is of

order 2; hence G/H is isomorphic to Z2. If b ∈ G and b /∈ H then b2 ∈ H (since

G/H consists of two cosets, say bH and b2H = H. H consists of four elements

of order 5 and the identity a. If b2 ∈ H is of order 5, then b is of order 10 an

G = 〈b〉, contradicting the fact that G is nor abelian. So it must be that b2 = 1.

Since H is a normal subgroup of G, then bab−1 = H (Theorem 14.13) and, in

particular, bab−1 ∈ H. Since conjugation by b is an automorphism of H (the inner

automorphism of G, ib—see Definition 14.15) and bab−1 6= 1 (because bab−1 = 1

implies ba = b or a = b−1b = 1, a contradiction), then bab−1 must be an element

H of order 5. So bab−1 must be either a, a2, a3, or a4. But bab−1 = a implies

ba = ab and this implies, since a and b are generators of G, that G is abelian, a

contradiction. So this leaves three possible presentations for G:

1. (a, b : a5 = 1, b2 = 1, ba = a2b),

2. (a, b : a5 = 1, b2 = 1, ba = a3b),

3. (a, b : a5 = 1, b2 = 1, ba = a4b).

The relation ba = aib allows us to move all a’s to the left and all b’s to the right

in any product (for example, b2ab3 = b(ba)b3 = babb3 = (ab)b4 = ab5). So every

element of G is of the form asbt. Since a5 = 1 and b2 = 1, then the 10 possible
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elements of G are:

{a0b0, a1b0, a2b0, a3b0, a4b0, a0b1, a1b2, a2b1, a3b1, a4b1}

= {1, a, a2, a3, a4, b, ab, a2b, a3b, a4b}.

We now analyze the three presentations.

Consider (a, b : a5 = 1, b2 = 1, ba = a2b). This implies

a = 1 · a = b2a = b(ba) = b(a2b) = (ba)(ab) = (a2b)(ab)

= a2(ba)b = a2(a2b)b − a4b2 = a4 · 1 = a4.

But a = a4 implies that a3 = 1, contradicting the fact that a is of order 5. In fact,

a3 = 1 and a5 = 1 combine to imply that a = 1. In this case, the elements of G are

b and b2 = 1. So this presentation implies a group isomorphic to Z2.

Consider (a, b : a5 = 1, b2 = 1, ba = a3b). Again,

a = 1 · a = b2a = (b(ba) = ba3b = (ba)(a2b) = (a3b)(a2b) = a3(ba)ab

= a3(a3b)ab = a6(ba)b = a6(a3b)b = a9b2 = a4a5b2 = a4 · 1 · 1 = a4.

So this and the precious presentation are isomorphic presentations and again we

have a presentation of Z2.

Consider (a, b : a5 = 1, b2 = 1, ba = a4b). As in the equations above, we use the

relation ba = a4b to express a product (asbt)(aubv) in the form axby. This leads to

x being the remainder when s + u(4t) is divided by 5 and y being the remainder

when t + v is divided by 2. We have a0b0 as the identity, and that be defining first

t ≡ −v (mod 2) and second s ≡ −u(4t) (mod 5), element asbt is a left inverse of

aubv. So we have a group structure on the 10 elements if associativity holds. Since



VII.40. Group Presentations 7

42 ≡ 1 (mod 5), by Exercise 40.13, associativity holds. So we have a presentation

of a nonabelian group of order 10 and any other nonabelian group of order 10 must

be isomorphic to this group. Since D5 is an example of such a group, then this

presentation must be a group presentation for D5 and D5 is the unique (up to

isomorphism) nonabelian group of order 10.

Example 40.6. There are 5 groups of order 8.

By the Fundamental Theorem of Finitely Generated Abelian Groups (Theorem

11.12), there are three abelian groups of order 8: Z2 × Z2 × Z2, Z2 × Z4, and Z8.

We now use group presentations to classify the nonabelian groups of order 8.

Let G be a nonabelian group of order 8. Since G is nonabelian, it has no elements

of order 8. So each element of G (other than 1) is of order 2 or 4. If every such

element is of order 2, then for a, g ∈ G we would have (ab)2 = 1 or abab = 1. But

then, since a2 = b2 = 1, we would have ba = a2bab2 = a(ab)2b = a · 1 · b = ab and

G would be abelian. Thus G must have an element of order 4.

Let 〈a〉 be a subgroup of G of order 4. So there are only two cosets of 〈a〉 in

G; one coset is 〈a〉 = g〈a〉 = 〈a〉g for g ∈ 〈a〉 and the other coset is g〈a〉 = 〈a〉g

for g 6= 〈a〉. So 〈a〉 is a normal subgroup of G. So G/〈a〉 exists and is of order 2,

so G/〈a〉 ∼= Z2. As in the previous example, since b /∈ 〈a〉, then b2 ∈ 〈a〉 (and the

cosets of 〈a〉 are b〈a〉 and b2〈a〉 = 〈a〉). If b2 = a or b3 = a then b would be of order

8. Hence b2 = 1 or b2 = a2 Since 〈a〉 is normal, we have bab−1 ∈ 〈a〉 by Theorem

14.13, and b〈a〉b−1 is a subgroup of G conjugate to 〈a〉 and hence isomorphic to

〈a〉 (under the inner automorphism ib—see Definition 14.15), so bab−1 must be an

element of order 4. So bab−1 − a or bab−1 = a3. If bab−1 = a, then ba = ab and G
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is abelian since a and b are generators of G, a contradiction. So it must be that

bab−1 = a3 and ba = a3b. So we have two possible presentations for G:

G1 = (a, b : a4 = 1, b2 = 1, ba = a3b),

G2 = (a, b : a4 = 1, b2 = a2, ba = a3b).

Notice that in both G1 and G2 we have a−1 = a3. In G1, b−1 = b. In G2,

b−1 = b3. As in the other examples of this section, ba = a3b allows us to write

every element in the form ambn. Since a4 = 1 and b2 = 1, we get the 8 elements:

a, a, a2, a3, b, ab, a2b, a3b. Since in G1 with m = 4, n = 2, r = 3, Exercise 401.3 gives

rn = 32 ≡ 1 (mod 4) = 1 (mod m), so G1 determines a group of order mn = 8.

Fraleigh states that “An argument similar to that used in Exercise 13 shows that

G2 has order 8 also.”

Since ba = a3b 6= ab (since a2 6= 1), then both G1 and G2 are nonabelian. We can

show that G1 and G2 are not isomorphic by considering elements of certain orders.

Based on the 8 elements listed above, we can confirm that G1 has two elements of

order 4 (a and a3). In G2 all elements are of order 4 except 1 and a2. The group

tables are asked for in Exercise 40.3. In fact, G1
∼= D4 and is sometimes called

the octic group. G2 is isomorphic to the quaternion group which was introduced in

Section 24.

Note. Arthur Cayley in his 1859 paper “On the Theory of Groups as Depending

on the Symbolic Equation θn = 1. Third Part,” gives a presentation of the octic

group and shows that (a, b : am = 1, bn = 1, ba = arb) is the presentation of a group

of order mn if and only if rn ≡ 1 (mod m) (this is Exercise 40.13). In the early
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1890s, Otto Hölder, using the techniques of Sections 36, 37, and 40 (Sylow theory

and group presentations—recall that the Sylow Theorems were proved for abstract

groups by Frobenius in 1887) to classify all simple groups up to order 200, and all

groups of orders p3, pq2, pqr, and p4 where p, q, r are distinct primes.
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