Part X. Automorphisms and Galois Theory Section X.48. Automorphisms of Fields

Note. In this section, we define an automorphism of a field as an isomorphism of the field with itself. We'll see that the set of all automorphisms of a field form a group (under function composition). We are particularly interested in automorphisms which fix subfields of the given field.

Definition 48.1. Let E be an algebraic extension of field F . Two elements $\alpha, \beta \in E$ are conjugate over F if $irr(\alpha, F) = irr(\beta, F)$; that is, if α and β are zeros of the same irreducible polynomial over F.

Note. The terminology "conjugate" comes from complex analysis. If z is a complex zero of $p(x) = a_{,}x^{n} + a_{n-1}x^{n-1} + \cdots + a_{2}x^{2} + a_{1} + a_{0} \in \mathbb{R}[x]$, then so is \overline{z} :

$$
p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_2 z^2 + a_1 z + a_0 = 0
$$

implies

$$
\overline{a_n z^n + a_{n-1} z^{n-1} + \dots + a_2 z^2 + a_1 z + a_0} = \overline{0}
$$

or

$$
a_n(\overline{z})^n + a_{n-1}(\overline{z})^{n-1} + \cdots + a_2(\overline{z})^2 + a_1\overline{z} + a_0 = \overline{0} = 0.
$$

Theorem 48.3. The Conjugation Isomorphisms.

Let F be a field and let α and β be algebraic over F with $deg(\alpha, F) = n$. The map $\psi_{\alpha,\beta}: F(\alpha) \to F(\beta)$ defined by

$$
\psi_{\alpha,\beta}(c_0 + c_1\alpha + c_2\alpha^2 + \dots + c_{n-1}\alpha^{n-1}) = c_0 + c_1\beta + c_2\beta^2 + \dots + c_{n-1}\beta^{n-1}
$$

for $c_i \in F$ is an isomorphism of $F(\alpha)$ onto $F(\beta)$ if and only if α and β are conjugate over F. (Notice that $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is a basis of $F(\alpha)$ [and similarly for $\{1, \beta, \beta^2, \dots, \beta^{n-1}\}$ for $F(\beta)$] by Theorem 30.23.)

Note. The following result is the "cornerstone" of the proof of the Isomorphism Extension Theorem (Theorem 49.3) which implies the uniqueness of the algebraic closure of a field.

Corollary 48.5. Let α be algebraic over a field F. Every isomorphism ψ mapping $F(\alpha)$ onto a subfield of \overline{F} such that $\psi(a) = a$ for $a \in F$, maps α onto a conjugate β of α over F. Conversely, for each conjugate β of α over F, there exists exactly one isomorphism $\psi_{\alpha,\beta}$ of $F(\alpha)$ onto a subfield of \overline{F} mapping α onto β and mapping each $a \in F$ onto itself.

Note. The following is an algebraic proof (based on mappings) of the claim made above about complex conjugates.

Corollary 48.6. Let $f(x) \in \mathbb{R}[x]$. If $f(a + ib) = 0$ for $a + ib \in \mathbb{C}$, where $a, b \in \mathbb{R}$, then $f(a - ib) = 0$.

Example 48.7. Consider $\mathbb{Q}(\sqrt{2})$. $\sqrt{2}$ and $-\sqrt{2}$ are conjugate over \mathbb{Q} and $\psi_{\sqrt{2},-\sqrt{2}}$: $\mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ defined by $\psi_{\sqrt{2},-\sqrt{2}}(a+b\sqrt{2})=a-b\sqrt{2}$ is an isomorphism.

Note. In the proof of Corollary 48.6, $\psi_{i,-i}$ is an isomorphism of \mathbb{C} with itself which fixes R. In Example 48.7, $\psi_{\sqrt{2},-\sqrt{2}}$ is an isomorphism of $\mathbb{Q}(\sqrt{2})$ with itself which fixes Q. We are interested in such isomorphisms and the subfields which they fix.

Definition 48.8. An isomorphism of a field onto itself is an *automorphism* of the field.

Definition 48.9. If σ is an isomorphism of a field E onto some field, then an element a of E is left fixed by σ if $\sigma(a) = a$ (and so a is also in the "some field"). A collection S of isomorphisms of E leaves a *subfield* F of E fixed if each $\alpha \in F$ is fixed by every $\sigma \in S$. If $\{\sigma\}$ leaves F fixed, then σ leaves field F fixed.

Note. The text comments that "...much of our preceding work is now being brought together. The next three theorems . . . form the foundation of everything that follows." (See page 418.)

Theorem 48.11. Let $\{\sigma_i \mid i \in I\}$ be a collection of automorphisms of a field E. Then the set $E_{\{\sigma_i\}}$ of all $a \in E$ fixed by every σ_i for $i \in I$ forms a subfield of E.

Definition 48.12. The field $E_{\{\sigma_i\}}$ of Theorem 48.11 is the *fixed field of* $\{\sigma_i \mid i \in I\}$. For a single automorphism σ , we call $E_{\{\sigma\}}$ the fixed field of σ .

Note. Since an automorphism of a field E to itself is a one to one and onto mapping, then it is a permutation of set E . We know that the compositions of permutations are again permutations. It turns out that the composition of automorphisms are automorphisms.

Theorem 48.14. The set of all automorphisms of a field E is a group under function composition.

Theorem 48.15. Let E be a field and F a subfield of E. Then the set of all automorphisms of E leaving F fixed, denoted $G(E/F)$, forms a subgroup of the group of all automorphisms of E. Furthermore, $F \leq E_{G(E/F)}$.

Note. The notation " $G(E/F)$ " for the set of all automorphisms of E which fix F is a bit confusing—do not confuse this with some sort of quotient (though it is true that F is a subfield of E).

Definition 48.16. The group $G(E/F)$ of Theorem 48.15 is the group of *automor*phisms of E leaving F fixed, or the group of E over F .

Example 48.17. Consider $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Since $\sqrt{2}$ and $-\sqrt{2}$ are conjugates then $\psi_{\sqrt{2},-\sqrt{2}}$ is an automorphism. Similarly, $\psi_{\sqrt{3},-\sqrt{3}}$ is an automorphism. We can compose these to get $\psi_{\sqrt{2},-\sqrt{2}} \psi_{\sqrt{3},-\sqrt{3}}(a+b\sqrt{2}+c\sqrt{3}) = a - b\sqrt{2} - c\sqrt{3}$. Also, of course, the identity ι is an automorphism. Each of these fixes $\mathbb{Q}, \psi_{\sqrt{2}, -\sqrt{2}}$ fixes $\mathbb{Q}(\sqrt{3})$, and $\psi_{\sqrt{3},-\sqrt{3}}$ fixes $\mathbb{Q}(\sqrt{2})$. A basis for $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over \mathbb{Q} is $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$ and an automorphism of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ which fixes $\mathbb Q$ is determined by its behavior on $\sqrt{2}$ and $\sqrt{3}$ (notice that these together determine the behavior on $\sqrt{6}$). So the 4 automorphisms above are the only such automorphisms. Denote $\sigma_1 = \psi_{\sqrt{2}, -\sqrt{2}}$, $\sigma_2 = \psi_{\sqrt{3},-\sqrt{3}}$, and $\sigma_3 = \psi_{\sqrt{2},-\sqrt{2}} \psi_{\sqrt{3},-\sqrt{3}}$. Then the group $G(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ has the table:

In fact, $G(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}) \cong V$ (the Klein 4-group). Notice that $|G(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})| =$ 4 and $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$. The fact that both of these are the same is not a coincidence (as we'll see in Corollary 49.10).

Theorem 48.19. Let F be a finite field of characteristic p. Then the map σ_p : $F \to F$ defined by $\sigma_p(a) = a^p$ for all $a \in F$ is an automorphism of F, called the Frobenius automorphism of F. Also, $F_{\{\sigma_p\}} \cong \mathbb{Z}_p$.

Note. A common modern algebra joke is to refer to a field of characteristic p as satisfying "freshman exponentiation" due to the fact that $(a + b)^p = a^p + b^p$.

Revised: 3/30/2014