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Part X. Automorphisms and

Galois Theory

Section X.48. Automorphisms of Fields

Note. In this section, we define an automorphism of a field as an isomorphism

of the field with itself. We’ll see that the set of all automorphisms of a field form

a group (under function composition). We are particularly interested in automor-

phisms which fix subfields of the given field.

Definition 48.1. Let E be an algebraic extension of field F . Two elements

α, β ∈ E are conjugate over F if irr(α, F ) = irr(β, F ); that is, if α and β are zeros

of the same irreducible polynomial over F .

Note. The terminology “conjugate” comes from complex analysis. If z is a complex

zero of p(x) = a,x
n + an−1x

n−1 + · · · + a2x
2 + a1 + a0 ∈ R[x], then so is z:

p(z) = anz
n + an−1z

n−1 + · · · + a2z
2 + a1z + a0 = 0

implies

anzn + an−1zn−1 + · · · + a2z2 + a1z + a0 = 0

or

an(z)
n + an−1(z)

n−1 + · · · + a2(z)
2 + a1z + a0 = 0 = 0.
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Theorem 48.3. The Conjugation Isomorphisms.

Let F be a field and let α and β be algebraic over F with deg(α, F ) = n. The map

ψα,β : F (α) → F (β) defined by

ψα,β(c0 + c1α+ c2α
2 + · · · + cn−1α

n−1) = c0 + c1β + c2β
2 + · · · + cn−1β

n−1

for ci ∈ F is an isomorphism of F (α) onto F (β) if and only if α and β are conju-

gate over F . (Notice that {1, α, α2, . . . , αn−1} is a basis of F (α) [and similarly for

{1, β, β2, . . . , βn−1}for F (β)] by Theorem 30.23.)

Note. The following result is the “cornerstone” of the proof of the Isomorphism

Extension Theorem (Theorem 49.3) which implies the uniqueness of the algebraic

closure of a field.

Corollary 48.5. Let α be algebraic over a field F . Every isomorphism ψ mapping

F (α) onto a subfield of F such that ψ(a) = a for a ∈ F , maps α onto a conjugate

β of α over F . Conversely, for each conjugate β of α over F , there exists exactly

one isomorphism ψα,β of F (α) onto a subfield of F mapping α onto β and mapping

each a ∈ F onto itself.

Note. The following is an algebraic proof (based on mappings) of the claim made

above about complex conjugates.
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Corollary 48.6. Let f(x) ∈ R[x]. If f(a+ ib) = 0 for a + ib ∈ C, where a, b ∈ R,

then f(a− ib) = 0.

Example 48.7. Consider Q(
√

2).
√

2 and −
√

2 are conjugate over Q and ψ√
2,−

√
2 :

Q(
√

2) → Q(
√

2) defined by ψ√
2,−

√
2(a+ b

√
2) = a− b

√
2 is an isomorphism.

Note. In the proof of Corollary 48.6, ψi,−i is an isomorphism of C with itself which

fixes R. In Example 48.7, ψ√
2,−

√
2 is an isomorphism of Q(

√
2) with itself which

fixes Q. We are interested in such isomorphisms and the subfields which they fix.

Definition 48.8. An isomorphism of a field onto itself is an automorphism of the

field.

Definition 48.9. If σ is an isomorphism of a field E onto some field, then an

element a of E is left fixed by σ if σ(a) = a (and so a is also in the “some field”).

A collection S of isomorphisms of E leaves a subfield F of E fixed if each α ∈ F is

fixed by every σ ∈ S. If {σ} leaves F fixed, then σ leaves field F fixed.

Note. The text comments that “. . .much of our preceding work is now being

brought together. The next three theorems . . . form the foundation of everything

that follows.” (See page 418.)
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Theorem 48.11. Let {σi | i ∈ I} be a collection of automorphisms of a field E.

Then the set E{σi} of all a ∈ E fixed by every σi for i ∈ I forms a subfield of E.

Definition 48.12. The field E{σi} of Theorem 48.11 is the fixed field of {σi | i ∈ I}.
For a single automorphism σ, we call E{σ} the fixed field of σ.

Note. Since an automorphism of a field E to itself is a one to one and onto

mapping, then it is a permutation of set E. We know that the compositions of

permutations are again permutations. It turns out that the composition of auto-

morphisms are automorphisms.

Theorem 48.14. The set of all automorphisms of a field E is a group under

function composition.

Theorem 48.15. Let E be a field and F a subfield of E. Then the set of all

automorphisms of E leaving F fixed, denoted G(E/F ), forms a subgroup of the

group of all automorphisms of E. Furthermore, F ≤ EG(E/F ).

Note. The notation “G(E/F )” for the set of all automorphisms of E which fix F

is a bit confusing—do not confuse this with some sort of quotient (though it is true

that F is a subfield of E).
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Definition 48.16. The group G(E/F ) of Theorem 48.15 is the group of automor-

phisms of E leaving F fixed, or the group of E over F .

Example 48.17. Consider Q(
√

2,
√

3). Since
√

2 and −
√

2 are conjugates then

ψ√
2,−

√
2 is an automorphism. Similarly, ψ√

3,−
√

3 is an automorphism. We can

compose these to get ψ√
2,−

√
2 ψ

√
3,−

√
3(a + b

√
2 + c

√
3) = a − b

√
2 − c

√
3. Also,

of course, the identity ι is an automorphism. Each of these fixes Q, ψ√
2,−

√
2 fixes

Q(
√

3), and ψ√
3,−

√
3 fixes Q(

√
2). A basis for Q(

√
2,
√

3) over Q is {1,
√

2,
√

3,
√

6}
and an automorphism of Q(

√
2,
√

3) which fixes Q is determined by its behavior

on
√

2 and
√

3 (notice that these together determine the behavior on
√

6). So the

4 automorphisms above are the only such automorphisms. Denote σ1 = ψ√
2,−

√
2,

σ2 = ψ√
3,−

√
3, and σ3 = ψ√

2,−
√

2 ψ
√

3,−
√

3. Then the group G(Q(
√

2,
√

3)/Q) has

the table:

ι σ1 σ2 σ3

ι ι σ1 σ2 σ3

σ1 σ1 ι σ3 σ2

σ2 σ2 σ3 ι σ1

σ3 σ3 σ2 σ1 ι

In fact,G(Q(
√

2,
√

3)/Q) ∼= V (the Klein 4-group). Notice that |G(Q(
√

2,
√

3)/Q)| =

4 and [Q(
√

2,
√

3) : Q] = 4. The fact that both of these are the same is not a coin-

cidence (as we’ll see in Corollary 49.10).
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Theorem 48.19. Let F be a finite field of characteristic p. Then the map σp :

F → F defined by σp(a) = ap for all a ∈ F is an automorphism of F , called the

Frobenius automorphism of F . Also, F{σp}
∼= Zp.

Note. A common modern algebra joke is to refer to a field of characteristic p as

satisfying “freshman exponentiation” due to the fact that (a+ b)p = ap + bp.
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