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Part X. Automorphisms and

Galois Theory
Section X.48. Automorphisms of Fields

Note. In this section, we define an automorphism of a field as an isomorphism
of the field with itself. We’ll see that the set of all automorphisms of a field form
a group (under function composition). We are particularly interested in automor-

phisms which fix subfields of the given field.

Definition 48.1. Let F be an algebraic extension of field F'. Two elements
a, 3 € E are conjugate over F' if irr(«, F) = irr(3, F'); that is, if « and 3 are zeros

of the same irreducible polynomial over F'.

Note. The terminology “conjugate” comes from complex analysis. If z is a complex

zero of p(x) = ax" + ap_12" 1 + - - + agx® + a3 + ag € R[z], then so is Z:
p(z) = a,2" + U 12" a2 Farz + apg =20

implies

A2 + 12"V an2? Farz+ag =0

or

an(Z)" + an1(Z)" 4+ a(@)P+aZ+ag=0=0.
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Theorem 48.3. The Conjugation Isomorphisms.
Let F be a field and let a and (3 be algebraic over F' with deg(a, F') = n. The map
VYo F(a) — F(B) defined by

Vo plco + 1o+ 0+t epd" ) =g FaBF et f

for ¢; € F' is an isomorphism of F'(a) onto F(3) if and only if @ and [ are conju-
gate over F. (Notice that {1,c,a?,..., a" !} is a basis of F(«) [and similarly for

{1,8,3,...,5" T Hor F(3)] by Theorem 30.23.)

Note. The following result is the “cornerstone” of the proof of the Isomorphism
Extension Theorem (Theorem 49.3) which implies the uniqueness of the algebraic

closure of a field.

Corollary 48.5. Let o be algebraic over a field F'. Every isomorphism ¢ mapping
F(a) onto a subfield of F such that ¢(a) = a for @ € F, maps a onto a conjugate
B of a over F'. Conversely, for each conjugate  of o over F', there exists exactly
one isomorphism v, 5 of F(a) onto a subfield of F' mapping a onto 3 and mapping

each a € F' onto itself.

Note. The following is an algebraic proof (based on mappings) of the claim made

above about complex conjugates.
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Corollary 48.6. Let f(x) € R[z]|. If f(a+ib) =0 for a + ib € C, where a,b € R,
then f(a —1ib) = 0.

Example 48.7. Consider Q(\/§) V2 and —/2 are conjugate over Q and (CNCI-
Q(v2) — Q(v/2) defined by Vs _yala+ bv/2) = a — by/2 is an isomorphism.

Note. In the proof of Corollary 48.6, 1; _; is an isomorphism of C with itself which
fixes R. In Example 48.7, ¢ 5 _ 55 is an isomorphism of Q(v/2) with itself which

fixes Q. We are interested in such isomorphisms and the subfields which they fix.

Definition 48.8. An isomorphism of a field onto itself is an automorphism of the

field.

Definition 48.9. If ¢ is an isomorphism of a field F onto some field, then an
element a of E is left fized by o if 0(a) = a (and so a is also in the “some field”).
A collection S of isomorphisms of E leaves a subfield F' of E fixed if each o € F is
fixed by every o € S. If {o} leaves F fixed, then o leaves field F fized.

Note. The text comments that “...much of our preceding work is now being
brought together. The next three theorems ...form the foundation of everything

that follows.” (See page 418.)
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Theorem 48.11. Let {o; | i € I} be a collection of automorphisms of a field E.
Then the set Ey,, of all a € E fixed by every o; for i € I forms a subfield of £.

Definition 48.12. The field Ey,,, of Theorem 48.11 is the fized field of {o; | i € I}.

For a single automorphism o, we call E, the fized field of o.

Note. Since an automorphism of a field E to itself is a one to one and onto
mapping, then it is a permutation of set £. We know that the compositions of
permutations are again permutations. It turns out that the composition of auto-

morphisms are automorphisms.

Theorem 48.14. The set of all automorphisms of a field E is a group under

function composition.

Theorem 48.15. Let E be a field and F' a subfield of £. Then the set of all
automorphisms of E leaving F' fixed, denoted G(E/F), forms a subgroup of the

group of all automorphisms of E. Furthermore, F' < Egg/F).

Note. The notation “G(E/F)” for the set of all automorphisms of £ which fix I

is a bit confusing—do not confuse this with some sort of quotient (though it is true

that F is a subfield of E).
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Definition 48.16. The group G(E/F') of Theorem 48.15 is the group of automor-

phisms of E leaving F' fixed, or the group of E over F.

Example 48.17. Consider (@(\/5, \/§) Since v/2 and —+v/2 are conjugates then
V5.3 is an automorphism. Similarly, ¢, 5 5 is an automorphism. We can
compose these to get V.5 5 5 _5(a + b2+ cV/3) = a — bv/2 — /3. Also,
of course, the identity ¢ is an automorphism. Each of these fixes Q, ¢ 5 5 fixes
Q(v/3), and V3.3 fixes Q(v/2). A basis for Q(v/2,v/3) over Q is {1,v/2, 3,6}
and an automorphism of (@(\/5, \/§) which fixes Q is determined by its behavior
on v/2 and v/3 (notice that these together determine the behavior on v/6). So the
4 automorphisms above are the only such automorphisms. Denote o1 = ¢ 5 _ s,
0y = P 5_y3 and 03 = ¥ 5_ 5% 5_ 5 Then the group G(Q(v2,v3)/Q) has
the table:

L 01 09 O3

L | L o1 09 03
o101 L o3 09
oy|0oy 03 L 0y
o3| o3 oy 01 @
In fact, G(Q(v/2,v3)/Q) = V (the Klein 4-group). Notice that |G(Q(v/2,v/3)/Q)| =
4 and [Q(v/2,v3) : Q] = 4. The fact that both of these are the same is not a coin-

cidence (as we’ll see in Corollary 49.10).
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Theorem 48.19. Let F' be a finite field of characteristic p. Then the map o, :
F — F defined by o,(a) = a? for all @ € F' is an automorphism of F, called the

Frobenius automorphism of F. Also, Fi, 1 = Z,.

Note. A common modern algebra joke is to refer to a field of characteristic p as

satisfying “freshman exponentiation” due to the fact that (a + b)? = a? + OP.
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