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Section X.51. Separable Extensions

Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of

E as a vector space over F . For example, [Q(
√

2,
√

3) : Q] = 4 since a basis for

Q(
√

2,
√

3) over Q is {1,
√

2,
√

3,
√

6}. Recall that the number of isomorphisms of

E onto a subfield of F leaving F fixed is the index of E over F , denoted {E : F}.
We are interested in when [E : F ] = {E : F}. When this equality holds (again, for

finite extensions) E is called a separable extension of F .

Definition 51.1. Let f(x) ∈ F [x]. An element α of F such that f(α) = 0 is a zero

of f(x) of multiplicity ν if ν is the greatest integer such that (x−α)ν is a factor of

f(x) in F [x].

Note. I find the following result unintuitive and surprising! The backbone of

the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism

Extension Theorem.

Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have

the same multiplicity.

Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo-

rem 51.2.
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Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in

F [x] of the form

a
∏

i

(x− αi)
ν,

where the αi are the distinct zeros of f(x) in F and a ∈ F .

Note 1. By Theorem 48.3 (The Conjugation Isomorphisms Theorem) and Corol-

lary 48.5, we know that given a simple extension F (α) of F , there is one extension

of the identity isomorphism ι mapping F into F for every distinct zero of irr(α, F )

(namely ψα,β) and these are the only extensions of ι (by the uniqueness part of

Corollary 48.5). Therefore, {F (α) : F} is the number of distinct zeros of irr(α, F ).

Theorem 51.6. If E is a finite extension of F , then {E : F} divides [E : F ]. (In

the proof we see that [e : F ]/{E : F} =
∏
vi.)

Definition 51.7. A finite extension E of F is a separable extension field of F if

{E : F} = [E : F ]. An element α of F is a separable element over F if F (α) is

a separable extension of F . An irreducible polynomial f(x) ∈ F [x] is a separable

polynomial over F if every zero of f(x) in F is separable over F .

Note 2. Now that we know {E : F} divides [E : F ], we are interested in when these

two quantities are equal. In this case,
∏
vi = 1 and each zero of irr(αi, F (α1, α2, . . . ,

αi−1)) must be of multiplicity vi = 1. So element α is a separable element over F

if and only if irr(α, F ) has all zeros of multiplicity 1.
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Note 3. From the Note 2 above, we see that an irreducible polynomial f(x) ∈ F [x]

is a separable polynomial over F if and only if f(x) has all zeros of multiplicity 1.

Theorem 51.9. If K is a finite extension of E and E is a finite extension of F ,

that is F ≤ E ≤ K, then K is separable over F if and only if K is separable over

E and E is separable over F .

Note. Of course, Theorem 51.9 can be inductively extended to a “tower” of ex-

tension fields: F ≤ E1 ≤ E2 ≤ · · · ≤ En ≤ K. In addition, the concept of “E is

a separable extension field of F” can be extended to infinite extensions (though

Fraleigh does not explore this in any depth; these ideas are restricted to Exercise

51.12).

Corollary 51.10. If E is a finite extension of F , then E is separable over F if and

only if each α ∈ E is separable over F .

Note. Next, we will show that α fails to be a separable element over F only if

F is an infinite field of characteristic p 6= 0 (in Theorems 51.13 and 51.14). By

Note 2 above, α is not a separable element over F if it is a zero of irr(α, F ) of

multiplicity ≥ 2. Recall that α ∈ C is a zero of multiplicity m of f(x) ∈ C[x] if

and only if f(α) = f ′(α) = f ′′(α) = · · · = f (m)(α) = 0 and f (m+1)(α) 6= 0. This

topic of separable elements in a field can be explored using “formal derivatives”

(see Exercises 51.15 through 51.22). However, Fraleigh follows a shorter path.
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Lemma 51.11. Let F be an algebraic closure of F and let

f(x) = xn + an−1x
n−1 + an−2x

n−2 + · · · + a1x+ a0

be any monic polynomial in F [x]. If (f(x))m ∈ F [x] and m · 1 = 1+1+ · · ·+1 6= 0

in F , then f(x) ∈ F [x] (that is, ai ∈ F for all i).

Definition 51.12. A field is perfect if every finite extension is a separable exten-

sion.

Theorem 51.13. Every field of characteristic zero is perfect.

Theorem 51.14. Every finite field is perfect.

Note. Combining Theorems 51.13 and 51.14 we see that fields of characteristic zero

(such as Q and R) and finite fields only have separable finite extensions. So for an

example of a “nonseparable” extension, we must either consider infinite extensions

or finite extensions of an infinite field of characteristic p 6= 0.

Theorem 51.15. The Primitive Element Theorem.

Let E be a finite separable extension of a field F . Then there exists α ∈ E such

that E = F (α). That is, a finite separable extension of a field is a simple extension.

The element α is a primitive element.
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Corollary 51.16. A finite extension of a field of characteristic zero is a simple

extension.

Note. Comparing Corollary 33.6 and Corollary 51.16, we see that a finite extension

of (1) a finite field, and of (2) a field of characteristic zero, are both simple.

Exercise 51.3. Corollary 51.16 implies that the finite extension Q(
√

2,
√

3) of field

of characteristic zero Q is a simple extension. Find α ∈ R such that Q(
√

2,
√

3) =

Q(α).

Solution. Let α =
√

2 +
√

3. Then α3 = 11
√

2 + 9
√

3. So
√

2 = (α3 − 9α)/2

and
√

3 = (α3 − 11α)/(−2); hence
√

2,
√

3 ∈ Q(
√

2+
√

3). Therefore Q(
√

2,
√

3) ⊆
Q(

√
2 +

√
3). Also,

√
2 +

√
3 ∈ Q(

√
2,
√

3) and so Q(
√

2 +
√

3) ⊆ Q(
√

2,
√

3).

Hence Q(
√

2,
√

3) = Q(
√

2 +
√

3).
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