Section X.54. Illustrations of Galois Theory

Note. In this section we introduce the idea of a symmetric function which is based on the idea of permutations. The application of these permutations (which we know to be elements of a group) are applied to polynomials in Section 56 to prove the "final goal": A fifth degree polynomial equation is not (in general) algebraically solvable.

Note. Recall that if F is a field then F[x] is an integral domain (Section 22, Exercise 24). By Theorem 21.5, integral domain F[x] can be extended to a field of quotients, denoted F(x) (this is described on page 201). Similarly, integral domain $F[x_1, x_2, \ldots, x_n]$ can be extended to the field of rational functions in n indeterminates over F, denoted $F(x_1, x_2, \ldots, x_n)$. In the following, we denote the indeterminates as y_1, y_2, \ldots, y_n .

Note. Let F be a field and let y_1, y_2, \ldots, y_n be indeterminates. Let $\sigma \in S_n$ be a permutation of $\{1, 2, \ldots, n\}$. Then σ gives rise to a natural map $\overline{\sigma} : F(y_1, y_2, \ldots, y_n) \to F(y_1, y_2, \ldots, y_n)$ given by

$$\overline{\sigma}\left(\frac{f(y_1, y_2, \dots, y_n)}{g(y_1, y_2, \dots, y_n)}\right) = \frac{f(y_{\sigma(1)}, y_{\sigma(2)}, \dots, y_{\sigma(n)})}{g(y_{\sigma(1)}, y_{\sigma(2)}, \dots, y_{\sigma(n)})}$$

for $f(y_1, y_2, \dots, y_n), g(y_1, y_2, \dots, y_n) \in F[y_1, y_2, \dots, y_n]$ with $g(y_1, y_2, \dots, y_n) \neq 0$.

Note. As a **homework problem**, you will show that $\overline{\sigma}$ is an automorphism of $F(y_1, y_2, \dots, y_n)$ leaving F fixed (where we treat F as the subfield of $F(y_1, y_2, \dots, y_n)$ consisting of constant polynomials)—that is, $\overline{\sigma} \in G(F(y_1, y_2, \dots, y_n)/F)$.

Definition 54.1. An element $f(y_1, y_2, ..., y_n)/g(y_1, y_2, ..., y_n)$ of the field of rational functions in n indeterminates over F, $F(y_1, y_2, ..., y_n)$, is a symmetric function in $y_1, y_2, ..., y_n$ over F if it is left fixed by all $\overline{\sigma}$ for $\sigma \in S_n$:

$$\overline{\sigma}\left(\frac{f(y_1, y_2, \dots, y_n)}{g(y_1, y_2, \dots, y_n)}\right) = \frac{f(y_{\sigma(1)}, y_{\sigma(2)}, \dots, y_{\sigma(n)})}{g(y_{\sigma(1)}, y_{\sigma(2)}, \dots, y_{\sigma(n)})} \text{ for all } \sigma \in S_n.$$

Note. Let $\overline{S}_n = {\overline{\sigma} \mid \sigma \in S_n}$. As a **homework problem**, you will show that \overline{S}_n is a group isomorphic to S_n .

Definition. Let F be a field and $F(y_1, y_2, \ldots, y_n)$ be the field of rational functions in indeterminates y_1, y_2, \ldots, y_n . Then

$$f(x) = \prod_{i=1}^{n} (x - y_i) \in (F(y_1, y_2, \dots, y_n))[x]$$

is a general polynomial of degree n. The coefficients of f(x) are elementary symmetric functions in y_1, y_2, \ldots, y_n . We denote the elementary symmetric functions as s_i where s_i is the coefficient of x^{n-i} for $i = 1, 2, \ldots, n$.

Note. Since \overline{S}_n is a group of automorphisms of $F(y_1, y_2, \ldots, y_n)$, by Theorem 48.11, the collection of elements fixed by all $\overline{\sigma} \in \overline{S}_n$ forms a subfield of $F(y_1, y_2, \ldots, y_n)$, say subfield K. For each $\overline{\sigma} \in \overline{S}_n$, define $\overline{\sigma}_x$ as the extension of $\overline{\sigma}$ from $F(y_1, y_2, \ldots, y_n)$ to $(F(y_1, y_2, \ldots, y_n))[x]$ where $\overline{\sigma}_x(x) = x$. Then the general polynomial of degree n, f(x), is left fixed by each $\overline{\sigma}_x$ since

$$f(x) = \prod_{i=1}^{n} (x - y_i) = \prod_{i=1}^{n} (x - y_{\sigma(i)}).$$

So the coefficients of f(x) are left fixed by $\overline{\sigma}_x$ and the coefficients are in K. (See the notes for Section 53 for the expression of the coefficients in terms of $-y_i$.) That is, the elementary symmetric functions are fixed by all $\overline{\sigma}_x$ for $\sigma \in S_n$.

Theorem 54.2. Let s_1, s_2, \ldots, s_n be the elementary symmetric functions in the indeterminates y_1, y_2, \ldots, y_n . Then every symmetric function of y_1, y_2, \ldots, y_n over F is a rational function of the elementary symmetric functions. Also, $F(y_1, y_2, \ldots, y_n)$ is a finite normal extension of degree n! of $F(s_1, s_2, \ldots, s_n)$ and the Galois group of this extension is naturally isomorphic to S_n .

Note. The textbook repeatedly comments as to how the subgroup diagram of a Galois group is (structurally) the same as its inversion. In all examples we have seen so far, the diagrams have been vertically symmetric. The following example involves a diagram that is not vertically symmetric. It is a standard example which can also be found in Hungerford's *Algebra*, page 275 of Section V.4, "The Galois Group of a Polynomial."

Example 54.3. Let K be the splitting field of $x^4 - 2$ over \mathbb{Q} . Now $x^4 - 2$ is irreducible over \mathbb{Q} (by Eisenstein's criterion with p = 2). In \mathbb{C} , the zeros of $x^4 - 2$ are $\sqrt[4]{2}$, $-\sqrt[4]{2}$, $i\sqrt[4]{2}$, $-i\sqrt[4]{2}$. Denote $\alpha = \sqrt[4]{2}$. Since K must contain both α and $i\alpha$, then K must contain $i\alpha/\alpha = i$. So $K \neq \mathbb{Q}(\alpha)$. Since K must contain i and α , and $\mathbb{Q}(\alpha,i)$ contains all zeros of $x^4 - 2$, then $K = \mathbb{Q}(\alpha,i)$. Denote $E = \mathbb{Q}(\alpha)$ and we then have $\mathbb{Q} \leq E = \mathbb{Q}(\alpha) \leq K = \mathbb{Q}(\alpha,i)$.

Now, a basis for $E=\mathbb{Q}(\alpha)$ over \mathbb{Q} is $\{1,\alpha,\alpha^2,\alpha^3\}$, and a basis for $K=\mathbb{Q}(\alpha,i)$ over $E=\mathbb{Q}(\alpha)$ is $\{1,i\}$. So $[E:\mathbb{Q}]=4$ and [K:E]=2. So by Theorem 31.4, $[K:\mathbb{Q}]=[K:E][E:\mathbb{Q}]=8$. A basis for K over \mathbb{Q} is $\{1,\alpha,\alpha^2,\alpha^3,i,i\alpha,i\alpha^2,i\alpha^3\}$. Since K is the splitting field of x^4-2 and since each zero of x^4-2 is of multiplicity 1 (and by Note 2 of the notes for Section 51, K is a separable extension of \mathbb{Q}), so K is a separable splitting field of \mathbb{Q} —that is, K is a finite normal extension of \mathbb{Q} . So, by the Main Theorem of Galois Theory, Property 4, $[K:\mathbb{Q}]=|G(K/\mathbb{Q})|=8$. So there are 8 automorphisms of K leaving \mathbb{Q} fixed. Such an automorphism is determined by its behavior on the basis $\{1,\alpha,\alpha^2,\alpha^3,i,i\alpha,i\alpha^2,i\alpha^3\}$, and hence determined by its value on i and α . Let σ be such an automorphism. By Corollary 48.5, $\sigma(\alpha)$ must be a conjugate of α —that is, a zero of $\operatorname{irr}(\alpha,\mathbb{Q})=x^4-2$ —so there are 4 such permutations. Similarly, $\sigma(i)$ must be a zero of $\operatorname{irr}(i,\mathbb{Q})=x^2+1$ and there are 2 such resulting permutations. This leads to the following 8 permutations in terms of the images of α and i:

Permutation σ	ρ_0	ρ_1	$ ho_2$	$ ho_3$	μ_1	δ_1	μ_2	δ_2
$\sigma(\alpha)$	α	$i\alpha$	$-\alpha$	$-i\alpha$	α	$i\alpha$	$-\alpha$	$-i\alpha$
$\sigma(i)$	i	i	\overline{i}	\overline{i}	-i	-i	-i	-i

With this notation, we find that these 8 permutations produce the permutation

group D_4 as given in Table 8.12 on page 80. The subgroup diagram is given on page 80. Here are both the group diagram and the corresponding field diagram.

$$H_{1} = \{\rho_{0}, \rho_{2}, \mu_{1}, \mu_{2}\}$$

$$H_{2} = \{\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}\}$$

$$H_{3} = \{\rho_{0}, \rho_{2}, \delta_{1}, \delta_{2}\}$$

$$H_{4} = \{\rho_{0}, \mu_{1}\}$$

$$H_{5} = \{\rho_{0}, \mu_{2}\}$$

$$H_{6} = \{\rho_{0}, \rho_{2}\}$$

$$H_{7} = \{\rho_{0}, \delta_{1}\}$$

$$H_{8} = \{\rho_{0}, \delta_{2}\}$$

$$K_{H_1} = \mathbb{Q}(\sqrt{2})$$

$$K_{H_2} = \mathbb{Q}(i)$$

$$K_{H_3} = \mathbb{Q}(i\sqrt{2})$$

$$K_{H_4} = \mathbb{Q}(\sqrt[4]{2})$$

$$K_{H_5} = \mathbb{Q}(i\sqrt[4]{2})$$

$$K_{H_6} = \mathbb{Q}(\sqrt{2}, i)$$

$$K_{H_7} = \mathbb{Q}(\sqrt[4]{2} + i\sqrt[4]{2})$$

$$K_{H_8} = \mathbb{Q}(\sqrt[4]{2} - i\sqrt[4]{2})$$

Note. Recall that for fields $F \leq E$ and for $H \leq G(E/F)$, we denote by K_H the subfield of E left fixed by the elements of H. We now discuss how K_H is determined in part of the previous example. For $H_4 = \{\rho_0, \mu_1\}$, we need an algebraic extension of \mathbb{Q} of degree 4 (since $[K:K_{H_4}] = |\lambda(K_{H_4})| = |H_4| = 2$ by the Main Theorem of Galois Theory, Properties 3 and 4, and by Theorem 31.4 $[K:\mathbb{Q}] = [K:K_{H_4}][K_{H_4}:\mathbb{Q}]$ or $S = 2[K_{H_4}:\mathbb{Q}]$ or $S = 2[K_{H_4}:\mathbb{Q}]$

Note. For $H_7 = \{\rho_0, \delta_1\}$ in the above example, we again cannot have any purely imaginary numbers in K_{H_7} since $\delta_1(i) = -i$. Also, as in the previous note, we need an extension of \mathbb{Q} of degree 4. So we must choose between $\mathbb{Q}(\alpha)$, $\mathbb{Q}(i\alpha)$, $\mathbb{Q}(\alpha + i\alpha)$, $\mathbb{Q}(\alpha - i\alpha)$, and $\mathbb{Q}(\sqrt{2}, i)$ (the last one is an extension of degree 4 since $[\mathbb{Q}(\sqrt{2}, i) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}(i)][\mathbb{Q}(i) : \mathbb{Q}] = 2 \times 2 = 4$ by Theorem 31.4). So we can apply δ_1 to α , $i\alpha$, $\alpha + i\alpha$, $\alpha - i\alpha$, and $(\sqrt{2} \text{ and } i)$ to see which is fixed. We find $\delta_1(\alpha + i\alpha) = \delta_1(\alpha) + \delta_1(i)\delta_1(\alpha) = i\alpha + (-i)(i\alpha) = \alpha + i\alpha$. So $\mathbb{Q}(\alpha + i\alpha)$ is fixed by H_7 and so $K_{H_7} = \mathbb{Q}(\alpha + i\alpha)$. (We can also check that no other subgroup of order 2 of $G(K/\mathbb{Q})$ fixes $\alpha + i\alpha$, but this is not necessary based on the one to one property of the mapping λ .)

Note. Now, suppose we wish to find $\operatorname{irr}(\sqrt[4]{2} + i\sqrt[4]{2}, \mathbb{Q}) = \operatorname{irr}(\alpha + i\alpha, \mathbb{Q})$. First, for every conjugate of $\alpha + i\alpha$ (in the sense defined in Section 48, not "complex conjugate"), there is an automorphism of K mapping $\alpha + i\alpha$ to that conjugate (by Theorem 48.3). So if we find all the conjugates of $\alpha + i\alpha$ by applying the 8 elements of $G(K/\mathbb{Q})$ to $\alpha + i\alpha$, then we can find $\operatorname{irr}(\alpha + i\alpha, \mathbb{Q})$. We find

$$\rho_0(\alpha + i\alpha) = \alpha + i\alpha = \delta_1(\alpha + i\alpha),$$

$$\rho_1(\alpha + i\alpha) = i\alpha - \alpha = \mu_2(\alpha + i\alpha),$$

$$\rho_2(\alpha + i\alpha) = -\alpha - i\alpha = \delta_2(\alpha + i\alpha),$$

$$\rho_3(\alpha + i\alpha) = -i\alpha + \alpha = \mu_1(\alpha + i\alpha).$$

So
$$\operatorname{irr}(\alpha + i\alpha, \mathbb{Q}) = (x - (\alpha + i\alpha))(x - (i\alpha - \alpha))(x - (-\alpha - i\alpha))(x - (-i\alpha + \alpha)) = x^4 + 8.$$

Example 54.7. Consider the splitting field of $x^4 + 1$ over \mathbb{Q} . The roots of $x^4 + 1$ are

$$\alpha = \frac{1+i}{\sqrt{2}}, \ \alpha^3 = \frac{-1+i}{\sqrt{2}}, \ \alpha^5 = \frac{-i-i}{\sqrt{2}}, \ \alpha^7 = \frac{1-i}{\sqrt{2}}.$$

So the splitting field K of $x^4 + 1$ over \mathbb{Q} is $\mathbb{Q}(\alpha)$ and $[K : \mathbb{Q}] = 4$ since a basis for K over \mathbb{Q} is $\{1, 1/\sqrt{2}, i/\sqrt{2}, i\}$. Now to find $G(K/\mathbb{Q})$. By Theorem 48.3, there is an automorphism of K mapping α to each conjugate of α . Such an automorphism σ is determined by the value of $\sigma(\alpha)$, so there are four such automorphisms:

Permutation σ	σ_1	σ_3	σ_5	σ_7
$\sigma(\alpha)$	α	α^3	α^5	α^7

We can verify that the group $\langle \{\sigma_1, \sigma_3, \sigma_5, \sigma_7\}, \cdot \rangle$ is isomorphic to $\langle \{1, 3, 5, 7\}, \cdot_8 \rangle$ which in turn is isomorphic to the Klein 4-group $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. The proper nontrivial

subgroups of $\{\sigma_1, \sigma_3, \sigma_5, \sigma_7\}$ are $\{\sigma_1, \sigma_3\}$, $\{\sigma_1, \sigma_5\}$, and $\{\sigma_1, \sigma_7\}$. The intermediate fields between \mathbb{Q} and $\mathbb{Q}(\alpha) = \mathbb{Q}((1+i)/\sqrt{2})$ are $\mathbb{Q}(i\sqrt{2})$, $\mathbb{Q}(i)$, and $\mathbb{Q}(\sqrt{2})$. We find

$$\sigma_1(\alpha) + \sigma_3(\alpha) = \alpha + \alpha^3 = i\sqrt{2}$$

$$\sigma_1(\alpha) + \sigma_7(\alpha) = \alpha + \alpha^7 = \sqrt{2}$$

$$\sigma_1(\alpha)\sigma_5(\alpha) = -i$$

and so $K_{\{\sigma_1,\sigma_3\}} = \mathbb{Q}(i\sqrt{2})$, $K_{\{\sigma_1,\sigma_7\}} = \mathbb{Q}(\sqrt{2})$, and $K_{\{\sigma_1,\sigma_5\}} = \mathbb{Q}(i)$. Therefore the group diagram and field diagram are:

Revised: 5/1/2015