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Section X.54. Illustrations of Galois Theory

Note. In this section we introduce the idea of a symmetric function which is based

on the idea of permutations. The application of these permutations (which we

know to be elements of a group) are applied to polynomials in Section 56 to prove

the “final goal”: A fifth degree polynomial equation is not (in general) algebraically

solvable.

Note. Recall that if F is a field then F [x] is an integral domain (Section 22,

Exercise 24). By Theorem 21.5, integral domain F [x] can be extended to a field

of quotients, denoted F (x) (this is described on page 201). Similarly, integral

domain F [x1, x2, . . . , xn] can be extended to the field of rational functions in n

indeterminates over F , denoted F (x1, x2, . . . , xn). In the following, we denote the

indeterminates as y1, y2, . . . , yn.

Note. Let F be a field and let y1, y2, . . . , yn be indeterminates. Let σ ∈ Sn be a per-

mutation of {1, 2, . . . , n}. Then σ gives rise to a natural map σ : F (y1, y2, . . . , yn) →
F (y1, y2, . . . , yn) given by

σ

(

f(y1, y2, . . . , yn)

g(y1, y2, . . . , yn)

)

=
f(yσ(1), yσ(2), . . . , yσ(n))

g(yσ(1), yσ(2), . . . , yσ(n))

for f(y1, y2, . . . , yn), g(y1, y2, . . . , yn) ∈ F [y1, y2, . . . , yn] with g(y1, y2, . . . , yn) 6= 0.
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Note. As a homework problem, you will show that σ is an automorphism of

F (y1, y2, . . . , yn) leaving F fixed (where we treat F as the subfield of F (y1, y2, . . . , yn)

consisting of constant polynomials)—that is, σ ∈ G(F (y1, y2, . . . , yn)/F ).

Definition 54.1. An element f(y1, y2, . . . , yn)/g(y1, y2, . . . , yn) of the field of ratio-

nal functions in n indeterminates over F , F (y1, y2, . . . , yn), is a symmetric function

in y1, y2, . . . , yn over F if it is left fixed by all σ for σ ∈ Sn:

σ

(

f(y1, y2, . . . , yn)

g(y1, y2, . . . , yn)

)

=
f(yσ(1), yσ(2), . . . , yσ(n))

g(yσ(1), yσ(2), . . . , yσ(n))
for all σ ∈ Sn.

Note. Let Sn = {σ | σ ∈ Sn}. As a homework problem, you will show that Sn

is a group isomorphic to Sn.

Definition. Let F be a field and F (y1, y2, . . . , yn) be the field of rational functions

in indeterminates y1, y2, . . . , yn. Then

f(x) =

n
∏

i=1

(x − yi) ∈ (F (y1, y2, . . . , yn))[x]

is a general polynomial of degree n. The coefficients of f(x) are elementary sym-

metric functions in y1, y2, . . . , yn. We denote the elementary symmetric functions

as si where si is the coefficient of xn−i for i = 1, 2, . . . , n.
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Note. Since Sn is a group of automorphisms of F (y1, y2, . . . , yn), by Theorem 48.11,

the collection of elements fixed by all σ ∈ Sn forms a subfield of F (y1, y2, . . . , yn), say

subfield K. For each σ ∈ Sn, define σx as the extension of σ from F (y1, y2, . . . , yn)

to (F (y1, y2, . . . , yn))[x] where σx(x) = x. Then the general polynomial of degree

n, f(x), is left fixed by each σx since

f(x) =

n
∏

i=1

(x − yi) =

n
∏

i=1

(x − yσ(i)).

So the coefficients of f(x) are left fixed by σx and the coefficients are in K. (See

the notes for Section 53 for the expression of the coefficients in terms of −yi.) That

is, the elementary symmetric functions are fixed by all σx for σ ∈ Sn.

Theorem 54.2. Let s1, s2, . . . , sn be the elementary symmetric functions in the

indeterminates y1, y2, . . . , yn. Then every symmetric function of y1, y2, . . . , yn over F

is a rational function of the elementary symmetric functions. Also, F (y1, y2, . . . , yn)

is a finite normal extension of degree n! of F (s1, s2, . . . , sn) and the Galois group

of this extension is naturally isomorphic to Sn.

Note. The textbook repeatedly comments as to how the subgroup diagram of a

Galois group is (structurally) the same as its inversion. In all examples we have

seen so far, the diagrams have been vertically symmetric. The following example

involves a diagram that is not vertically symmetric. It is a standard example which

can also be found in Hungerford’s Algebra, page 275 of Section V.4, “The Galois

Group of a Polynomial.”
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Example 54.3. Let K be the splitting field of x4 − 2 over Q. Now x4 − 2 is

irreducible over Q (by Eisenstein’s criterion with p = 2). In C, the zeros of x4 − 2

are 4
√

2, − 4
√

2, i 4
√

2, −i 4
√

2. Denote α = 4
√

2. Since K must contain both α and iα,

then K must contain iα/α = i. So K 6= Q(α). Since K must contain i and α, and

Q(α, i) contains all zeros of x4 − 2, then K = Q(α, i). Denote E = Q(α) and we

then have Q ≤ E = Q(α) ≤ K = Q(α, i).

Now, a basis for E = Q(α) over Q is {1, α, α2, α3}, and a basis for K = Q(α, i)

over E = Q(α) is {1, i}. So [E : Q] = 4 and [K : E] = 2. So by Theorem 31.4,

[K : Q] = [K : E][E : Q] = 8. A basis for K over Q is {1, α, α2, α3, i, iα, iα2, iα3}.
Since K is the splitting field of x4−2 and since each zero of x4−2 is of multiplicity 1

(and by Note 2 of the notes for Section 51, K is a separable extension of Q), so K is

a separable splitting field of Q—that is, K is a finite normal extension of Q. So, by

the Main Theorem of Galois Theory, Property 4, [K : Q] = |G(K/Q)| = 8. So there

are 8 automorphisms of K leaving Q fixed. Such an automorphism is determined

by its behavior on the basis {1, α, α2, α3, i, iα, iα2, iα3}, and hence determined by

its value on i and α. Let σ be such an automorphism. By Corollary 48.5, σ(α)

must be a conjugate of α—that is, a zero of irr(α, Q) = x4 −2—so there are 4 such

permutations. Similarly, σ(i) must be a zero of irr(i, Q) = x2 + 1 and there are 2

such resulting permutations. This leads to the following 8 permutations in terms

of the images of α and i:

Permutation σ ρ0 ρ1 ρ2 ρ3 µ1 δ1 µ2 δ2

σ(α) α iα −α −iα α iα −α −iα

σ(i) i i i i −i −i −i −i

With this notation, we find that these 8 permutations produce the permutation
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group D4 as given in Table 8.12 on page 80. The subgroup diagram is given on

page 80. Here are both the group diagram and the corresponding field diagram.

D4
∼= G(K/Q)

H1 H2 H3
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H1 = {ρ0, ρ2, µ1, µ2}
H2 = {ρ0, ρ1, ρ2, ρ3}
H3 = {ρ0, ρ2, δ1, δ2}
H4 = {ρ0, µ1}
H5 = {ρ0, µ2}
H6 = {ρ0, ρ2}
H7 = {ρ0, δ1}
H8 = {ρ0, δ2}

K = Q( 4
√

2, i)
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KH1
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√
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KH4
= Q( 4
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KH5
= Q(i 4

√
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KH6
= Q(

√
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KH7
= Q( 4

√
2 + i 4

√
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KH8
= Q( 4

√
2 − i 4

√
2)
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Note. Recall that for fields F ≤ E and for H ≤ G(E/F ), we denote by KH the

subfield of E left fixed by the elements of H. We now discuss how KH is determined

in part of the previous example. For H4 = {ρ0, µ1}, we need an algebraic extension

of Q of degree 4 (since [K : KH4
] = |λ(KH4

)| = |H4| = 2 by the Main Theorem of

Galois Theory, Properties 3 and 4, and by Theorem 31.4 [K : Q] = [K : KH4
][KH4

:

Q] or 8 = 2[KH4
: Q] or [KH4

: Q] = 4) which is left fixed by ρ0 (the identity) and

µ1 (where µ1(i) = −i). So we cannot have any purely imaginary numbers in KH4
.

If we take KH4
= Q(α), then this is certainly left fixed by H4 = {ρ0, µ1}. By the

Main Theorem of Galois Theory, the subgroup of G(K/F ) leaving E fixed (where

F ≤ E ≤ K) is denoted λ(E) and λ is a one to one map of the set of intermediate

fields onto the set of all subgroups of G(K/F ), so, by Property 3, λ(KH4
) = H4

and there is only one such KH4
left fixed by H4—since Q(α) satisfies this property,

it must be that KH4
= Q(α).

Note. For H7 = {ρ0, δ1} in the above example, we again cannot have any purely

imaginary numbers in KH7
since δ1(i) = −i. Also, as in the previous note, we

need an extension of Q of degree 4. So we must choose between Q(α), Q(iα),

Q(α + iα), Q(α − iα), and Q(
√

2, i) (the last one is an extension of degree 4 since

[Q(
√

2, i) : Q] = [Q(
√

2) : Q(i)][Q(i) : Q] = 2 × 2 = 4 by Theorem 31.4). So we

can apply δ1 to α, iα, α+ iα, α− iα, and (
√

2 and i) to see which is fixed. We find

δ1(α + iα) = δ1(α) + δ1(i)δ1(α) = iα + (−i)(iα) = α + iα. So Q(α + iα) is fixed by

H7 and so KH7
= Q(α+ iα). (We can also check that no other subgroup of order 2

of G(K/Q) fixes α+ iα, but this is not necessary based on the one to one property

of the mapping λ.)



X.54 Illustrations of Galois Theory 7

Note. Now, suppose we wish to find irr( 4
√

2 + i 4
√

2, Q) = irr(α + iα, Q). First,

for every conjugate of α + iα (in the sense defined in Section 48, not “complex

conjugate”), there is an automorphism of K mapping α + iα to that conjugate (by

Theorem 48.3). So if we find all the conjugates of α+ iα by applying the 8 elements

of G(K/Q) to α + iα, then we can find irr(α + iα, Q). We find

ρ0(α + iα) = α + iα = δ1(α + iα),

ρ1(α + iα) = iα − α = µ2(α + iα),

ρ2(α + iα) = −α − iα = δ2(α + iα),

ρ3(α + iα) = −iα + α = µ1(α + iα).

So irr(α+iα, Q) = (x−(α+iα))(x−(iα−α))(x−(−α−iα))(x−(−iα+α)) = x4+8.

Example 54.7. Consider the splitting field of x4 + 1 over Q. The roots of x4 + 1

are

α =
1 + i√

2
, α3 =

−1 + i√
2

, α5 =
−i − i√

2
, α7 =

1 − i√
2

.

So the splitting field K of x4 + 1 over Q is Q(α) and [K : Q] = 4 since a basis for

K over Q is {1, 1/
√

2, i/
√

2, i}. Now to find G(K/Q). By Theorem 48.3, there is

an automorphism of K mapping α to each conjugate of α. Such an automorphism

σ is determined by the value of σ(α), so there are four such automorphisms:

Permutation σ σ1 σ3 σ5 σ7

σ(α) α α3 α5 α7

We can verify that the group 〈{σ1, σ3, σ5, σ7}, ·〉 is isomorphic to 〈{1, 3, 5, 7}, ·8〉
which in turn is isomorphic to the Klein 4-group V ∼= Z2×Z2. The proper nontrivial
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subgroups of {σ1, σ3, σ5, σ7} are {σ1, σ3}, {σ1, σ5}, and {σ1, σ7}. The intermediate

fields between Q and Q(α) = Q((1 + i)/
√

2) are Q(i
√

2), Q(i), and Q(
√

2). We

find

σ1(α) + σ3(α) = α + α3 = i
√

2

σ1(α) + σ7(α) = α + α7 =
√

2

σ1(α)σ5(α) = −i

and so K{σ1,σ3} = Q(i
√

2), K{σ1,σ7} = Q(
√

2), and K{σ1,σ5} = Q(i). Therefore the

group diagram and field diagram are:

G(K/Q)

{σ1, σ3}

{σ1}

{σ1, σ5} {σ1, σ7}

HHHHHH

������

������

HHHHHH

K = Q(α)

Q(i
√

2)

Q

Q(i) Q(
√

2)

HHHHHH

������

������

HHHHHH
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