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Section X.54. [llustrations of Galois Theory

Note. In this section we introduce the idea of a symmetric function which is based
on the idea of permutations. The application of these permutations (which we
know to be elements of a group) are applied to polynomials in Section 56 to prove
the “final goal”: A fifth degree polynomial equation is not (in general) algebraically

solvable.

Note. Recall that if F' is a field then F[z] is an integral domain (Section 22,
Exercise 24). By Theorem 21.5, integral domain F[z]| can be extended to a field
of quotients, denoted F'(z) (this is described on page 201). Similarly, integral

domain F[xy,%s,...,%,] can be extended to the field of rational functions in n
indeterminates over F', denoted F'(z1,xs,...,x,). In the following, we denote the
indeterminates as y1,ys, . .., Yn.

Note. Let F' be a field and let y1, y9, . . ., y, be indeterminates. Let o € S, be a per-

mutation of {1,2,...,n}. Then o gives rise to anatural map @ : F(y1,v2,...,Yn) —
F(ylv Y2, . .- 7yn) given by

roi (f(ylv Y2, .- 7yn)> _ f(ya(l)v Yo(2)s - - - 7ya(n))
g(ylv Y2, ... 7yn) g(ya(l)v Yo(2)s - - - 7ya(n))

for f(yi,y2,-- - ¥n), 91, Y2, - -, Yn) € Fly1, 92, ..., yn] With g(y1,y2,...,yn) # 0.
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Note. As a homework problem, you will show that & is an automorphism of
F(y1, 92, ..., y,) leaving F fixed (where we treat F' as the subfield of F'(y1, ya, . .., Yn)
consisting of constant polynomials)—that is, @ € G(F(y1,y2, .-, yn)/F).

Definition 54.1. An element f(y1,y2,...,Yn)/9(y1, Y2, - .., yn) of the field of ratio-
nal functions in n indeterminates over F', F(y1,ys, ..., yn), is a symmetric function

in y1,y2,...,y, over F'if it is left fixed by all & for o € S,,:

E(f(ylvy%“-:yn)) f(ya(1)7y0(2)7~°°7ya(n))

= for all o € 5,,.
g(ylv Y2, - 7yn) g(ya(l)v Yo(2)s - - - 7ya(n))

Note. Let S, = {7 | 0 € S,}. As a homework problem, you will show that S,

is a group isomorphic to S,,.

Definition. Let F' be a field and F(y1, o, ..., y,) be the field of rational functions

in indeterminates vy, yo, ..., y,. Then

n

f(SU) = H(SU - yz) € (F(y17y27 ce 7yn))[x]

i=1
is a general polynomial of degree n. The coefficients of f(x) are elementary sym-
metric functions in y1, v, ...,Yy,. We denote the elementary symmetric functions

as s; where s; is the coefficient of 2"~ for i =1,2,...,n.
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Note. Since S, is a group of automorphisms of F(y1, s, . .., ¥n), by Theorem 48.11,
the collection of elements fixed by all & € S, forms a subfield of F(y1,vs, . . ., ¥u), say
subfield K. For each & € S, define 7, as the extension of & from F(y1,va, ..., Yn)
to (F'(y1,Y2,---,Yn))[x] where ,(z) = x. Then the general polynomial of degree
n, f(z), is left fixed by each 7, since

n n

f(z) =[]z —v) =1~ yow):

i=1 i=1
So the coefficients of f(z) are left fixed by 7, and the coefficients are in K. (See
the notes for Section 53 for the expression of the coefficients in terms of —y;.) That

is, the elementary symmetric functions are fixed by all 7, for o € 5,,.

Theorem 54.2. Let sq,s9,...,5, be the elementary symmetric functions in the
indeterminates y1, ¥2, . . . , Y. Then every symmetric function of y1,vo, . .., y, over F
is a rational function of the elementary symmetric functions. Also, F(y1, y2, - -, Yn)
is a finite normal extension of degree n! of F'(sq,s9,...,s,) and the Galois group

of this extension is naturally isomorphic to S,,.

Note. The textbook repeatedly comments as to how the subgroup diagram of a
Galois group is (structurally) the same as its inversion. In all examples we have
seen so far, the diagrams have been vertically symmetric. The following example
involves a diagram that is not vertically symmetric. It is a standard example which
can also be found in Hungerford’s Algebra, page 275 of Section V.4, “The Galois

Group of a Polynomial.”
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Example 54.3. Let K be the splitting field of 2* — 2 over Q. Now a* — 2 is
irreducible over Q (by Eisenstein’s criterion with p = 2). In C, the zeros of z* — 2
are V2, —v/2, iv/2, —iv/2. Denote o = v/2. Since K must contain both o and ia,
then K must contain ia/a =1i. So K # Q(«). Since K must contain ¢ and «, and
Q(a, i) contains all zeros of ' — 2, then K = Q(a,4). Denote £ = Q(a) and we
then have Q < F = Q(«a) < K = Q(a, 1).

Now, a basis for E = Q(«) over Q is {1, a, o?,a®}, and a basis for K = Q(a, 1)
over £ = Q(«a) is {1,7}. So [ : Q] =4 and [K : E] = 2. So by Theorem 31.4,
K : Q] = [K : E][E : Q] = 8. A basis for K over Q is {1, o, a?, a3, i,ic,ia?, ia?}.
Since K is the splitting field of 2* —2 and since each zero of 2* —2 is of multiplicity 1
(and by Note 2 of the notes for Section 51, K is a separable extension of Q), so K is
a separable splitting field of Q—that is, K is a finite normal extension of Q. So, by
the Main Theorem of Galois Theory, Property 4, [K : Q] = |G(K/Q)| = 8. So there
are 8 automorphisms of K leaving Q fixed. Such an automorphism is determined

2 .3

by its behavior on the basis {1, o, a?, a3, 1, ic, i

,ia’®}, and hence determined by
its value on ¢ and a. Let ¢ be such an automorphism. By Corollary 48.5, o(«)
must be a conjugate of a—that is, a zero of irr(a, Q) = 2* — 2—so there are 4 such
permutations. Similarly, (i) must be a zero of irr(i, Q) = 2? + 1 and there are 2
such resulting permutations. This leads to the following 8 permutations in terms

of the images of o and i:

Permutation o || po | p1 | p2 | p3 || 1 | 01 | p2 | 02

o(a) a |ia | —a | —ia || a |ia | —a | —ix

o (i) ild | i | i | =i =i =i | =

With this notation, we find that these 8 permutations produce the permutation
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group D, as given in Table 8.12 on page 80. The subgroup diagram is given on

page 80. Here are both the group diagram and the corresponding field diagram.

D, = G(K/Q) Hy = {po, p2, b1, 2}
/ \ Hy = {po,P1,027P3}
H, Ho H; Hjy = }907P27}51752}
Hy = {po, 1
H/ \%\ i, /H7/ \Hs Hs = }Po,ﬂzi
Hg = {po, p2
\\ 4/ Hy = {Zo,§1}
{po} Hs = {po, 02}
/}:Q (ﬁ)\\ G0
Ky, = Q(3)
Kn, Kg, Ky, Ky, KH, Kn, = @(2\/5)
N T
Ky Ky K o )
1 2 ’ KH6 - @(\/57 Z)
\ / Ky, = Q(V2+iv2)
0 K, = Q(v2 —iv/2)
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Note. Recall that for fields F' < F and for H < G(E/F'), we denote by Ky the
subfield of E left fixed by the elements of H. We now discuss how K is determined
in part of the previous example. For Hy = {py, i1}, we need an algebraic extension
of Q of degree 4 (since [K : Kg,| = |AN(Kp,)| = |H4| = 2 by the Main Theorem of
Galois Theory, Properties 3 and 4, and by Theorem 31.4 [K : Q] = [K : Kg,|[Kg, :
Q] or 8 = 2[Kpy, : Q] or [Kg, : Q] = 4) which is left fixed by py (the identity) and
p1 (where py(i) = —i). So we cannot have any purely imaginary numbers in Kp,.
If we take Ky, = Q(«), then this is certainly left fixed by Hy = {po, 11 }. By the
Main Theorem of Galois Theory, the subgroup of G(K/F') leaving E fixed (where
F < FE < K) is denoted A\(F) and A is a one to one map of the set of intermediate
fields onto the set of all subgroups of G(K/F), so, by Property 3, A(Kp,) = Hy
and there is only one such Ky, left fixed by H,—since Q(«) satisfies this property,
it must be that Ky, = Q(a).

Note. For H; = {py, 61} in the above example, we again cannot have any purely
imaginary numbers in K. since 61(i) = —i. Also, as in the previous note, we
need an extension of Q of degree 4. So we must choose between Q(«), Q(ic),
Q(a + i), Q(a — icr), and Q(v/2,4) (the last one is an extension of degree 4 since
[Q(v2,7) : Q] = [Q(+v/2) : Q(4)][Q() : Q] = 2 x 2 = 4 by Theorem 31.4). So we
can apply &; to «, ia, o +ia, a —ia, and (v/2 and i) to see which is fixed. We find
o (a+ia) =d61(a) + 01(i)01 () = i+ (—i)(ia) = a + ia. So Q(a + i) is fixed by
H7 and so K. = Q(a+ia). (We can also check that no other subgroup of order 2
of G(K/Q) fixes a+ icr, but this is not necessary based on the one to one property
of the mapping \.)
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Note. Now, suppose we wish to find irr(v/2 + iv/2,Q) = irr(a + ia, Q). First,
for every conjugate of o + i (in the sense defined in Section 48, not “complex
conjugate” ), there is an automorphism of K mapping a + i« to that conjugate (by

Theorem 48.3). So if we find all the conjugates of a+ia by applying the 8 elements
of G(K/Q) to o + icv, then we can find irr(a + i, Q). We find

pola+ia) = a+ia = 0 (a + i),

pr(a+ia) =i — a = po(a +ia),
p2(a+ia) = —a — ia = do(a + 1ar),
ps(a +ia) = —ia + o = m(a +ia).

Soirr(a+ia, Q) = (z—(a+ia))(z—(ia—a))(z—(—a—ia))(z—(—ia+a)) = 21 48.

Example 54.7. Consider the splitting field of 2* + 1 over Q. The roots of 2* + 1

are

1414 -1+ —1—1 1—1
o — +1 3 +1 5_ —t— o —

9 a = 9 a 9 — .
Ve Ve V2 Ve
So the splitting field K of 2% + 1 over Q is Q(a) and [K : Q] = 4 since a basis for

K over Q is {1,1/+/2,i/v/2,i}. Now to find G(K/Q). By Theorem 48.3, there is

an automorphism of K mapping « to each conjugate of a. Such an automorphism

o is determined by the value of o(«), so there are four such automorphisms:

Permutation o || 01 | 03 | 05 | 07

o(a) alad|a®|af

We can verify that the group ({o1,03,05,07},-) is isomorphic to ({1,3,5,7},s)

which in turn is isomorphic to the Klein 4-group V' = Zy X Zs. The proper nontrivial
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subgroups of {01, 03, 05,07} are {o1,03}, {01,035}, and {o1,07}. The intermediate

fields between Q and Q(a) = Q((1 + 1)/v/?2) are Q(iv/2), Q(i), and Q(v/2). We
find

and SO K{O’l,Ug} = Q(zﬁ)7 K{O’l,0'7} = Q(ﬁ)7

group diagram and field diagram are:

G(K/Q)

P /K\

{o1,03} {o1,05} {o1,07} Q(iv2) Q(4) Q(v2)

\{ }/ \ /

01

Revised: 5/1/2015



