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Section X.55. Cyclotomic Extensions

Note. In this section we return to a consideration of roots of unity and consider

again the cyclic group of roots of unity as encountered in Part I. “Primitive” roots

of unity are defined and we classify which regular n-gons are constructible with a

straight edge and compass.

Definition 55.1. The splitting field of xn − 1 over field F is the nth cyclotomic

extension of F .

Note. If α is a zero of xn − 1 ∈ F [x], then x−α is a factor of xn − 1 by the Factor

Theorem (Corollary 23.3). Consider g(x) = (xn − 1)/(x − α) (that is, perform

the division and cancellation so that g(x) is then a polynomial of degree n − 1).

Then g(α) = (n · 1)α−1 6= 0 provided the characteristic of F does not divide n (see

page 303 for the computation). So, under this condition on the characteristic of

F , any zero of xn − 1 is a zero of multiplicity 1 and by Note 2 of Section 51, the

splitting field of xn − 1 is separable. Therefore, the nth cyclotomic extension of F

is a finite normal extension (and so the Main Theorem of Galois Theory, Theorem

53.6, applies).
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Note. Recall that the nth roots of unity in C form the group Un and Un is

isomorphic to Zn. So Un is a cyclic group. The elements of Un which generate Un

are called primitive roots of unity (this definition is given in the exercises of Section

6). By Corollary 6.16, a cyclic group of order n has φ(n) generators, where φ is the

Euler phi-function (φ(n) is the number of positive integers less than n which are

relatively prime to n). So Un has φ(n) generators—the φ(n) primitive nth roots of

unity.

Definition 55.2. The polynomial

Φn(x) =

φ(n)
∏

i=1

(x − αi)

where the αi are the primitive nth roots of unity in F , is the nth cyclotomic

polynomial over F .

Note. With K as the splitting field of xn−1 over field F , we know by Corollary 48.5

that an automorphism in the Galois group G(K/F ) must permute the primitive nth

roots of unity. So the coefficients of Φn(x) are left fixed under such an automorphism

and so Φn(x) is left fixed under every element of G(K/F ) regarded as extended

to K[x]. Therefore Φn(x) ∈ F [x]. In particular, in the case when F = Q, we

have Φn(x) ∈ Q[x] and Φn(x) is a divisor of xn − 1. by Theorem 23.11, we have

Φn(x) ∈ Z[x]. We now claim without proof that Φn(x) is irreducible over Q (for a

proof, see Proposition V.8.3(i) of Thomas Hungerford’s Algebra, Springer Verlag,

1974).
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Example 55.3. Find the primitive 8th roots of unity in C and find Φn(x).

Solution. We know from Section 1 that the 8th roots of unity are of the form

cos

(

2kπ

8

)

+ i sin

(

2kπ

8

)

for k = 0, 1, 2, . . . , 7. By Corollary 6.16, the generators

of U8 (and hence the primitive 8th roots of unity) are given when k is relatively

prime to 8. That is, the primitive roots are given by k = 1, 3, 5, 7 (notice that

φ(8) = 4). With k = 1, we have ζ = cos
(

π
4

)

+ i sin
(

π
4

)

=
√

2
2 + i

√
2

2 . So the primitive

8th roots of unity are

ζ =

√
2

2
+ i

√
2

2
, ζ3 = −

√
2

2
+ i

√
2

2
, ζ5 = −

√
2

2
− i

√
2

2
, ζ7 =

√
2

2
− i

√
2

2
.

Then Φ8(x) = (x − ζ)(x − ζ3)(x − ζ5)(x − ζ7). As shown in Exercise 55.1, this

reduces to Φ8(x) = x4 + 1.

Theorem 55.4. The Galois group of the nth cyclotomic extension of Q has φ(n)

elements and is isomorphic to the group consisting of the positive integers less than

n and relatively prime to n under multiplication modulo n.

Example 55.5. In Example 54.7, we saw that the splitting field K of Φ8(x) = x4+1

satisfies G(K/Q) = {σ1, σ3, σ5, σ7} and G(K/Q) ∼= G8 = 〈{1, 3, 5, 7}, ·8〉.

Corollary 55.6. The Galois group of the pth cyclotomic extension of Q for a

prime p is cyclic of order p − 1.
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Note. We now have the equipment to address the construction of regular n-

gons with a compass and straight edge. Notice that the central angle determined

by a side of a regular n-gon is 2π/n. So a regular n-gon is constructible if and

only if angle 2π/n is constructible. By the Lemma to Theorem 32.11 (see the

video supplement to Section 32), 2π/n is constructible if and only if cos(2π/n)

is constructible. So a regular n-gon is constructible if and only if cos(2π/n) is

constructible.

Definition. A prime number of the form 2(2k) + 1 for non-negative integer k is a

Fermat prime.

Note. The only known Fermat primes are 3, 5, 17, 257, and 65,537 which cor-

respond to k = 0, 1, 2, 3, 4, respectively. For 5 ≤ k ≤ 19, 2(2k) + 1 is a composite

number. It is unknown if k = 20 produces a composite or a prime number. It is

unknown whether the number of Fermat primes is finite or infinite (see page 468).

Lemma 1. If the regular n-gon is constructible with a compass and straight edge

then all odd primes dividing n are Fermat primes whose squares do not divide n.

Example 55.7. The regular 7-gon is the smallest (in terms of the number of sides)

n-gon which is not constructible. Notice that for n ≤ 20, the regular n-gon with

n ∈ {7, 9, 11, 13, 14, 18, 19} is not constructible.



X.55 Cyclotomic Extensions 5

Lemma 2. If all odd primes dividing n are Fermat primes whose squares do not

divide n, then the regular n-gon is constructible with a compass and straight edge.

Note. Lemmas 1 and 2 combine to give us:

Theorem 55.8. The regular n-gon is constructible with a compass and straight

edge if and only if all the odd primes dividing n are Fermat primes whose squares

do not divide n.

Note. Euclid’s Elements gives constructions of regular n-gons for n ∈ {3, 4, 5, 6, 15}.
By combining these results, one could also construct n-gons for n ∈ {8, 10, 12, 16, 20}.
By Theorem 55.8, this covers all admissible cases where n ≤ 20, except for n = 17.

Theorem 55.8 implies that a 17-gon is constructible, since 17 is a Fermat prime.

As commented in the notes for Section 33, Gauss showed that a regular 17-gon

can be constructed with a compass and straight edge. He did not actually give

the construction, but only showed that it existed. The first explicit construction

of a 17-gon was given by Ulrich von Huguenin in 1803. H. W. Richmond found a

simpler version in 1893. (see page 136 of Why Beauty is Truth: A History of Sym-

metry by Ian Stewart, NY: Basic Books, 2007). It seems surprising that a question

addressed in Euclid’s Elements was picked up in the 19th century and taken taken

further down the field!
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