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Section X.56. Insolvability of the Quintic

Note. Now is a good time to reread the first set of notes “Why the Hell Am I

in This Class?” As we have claimed, there is the quadratic formula to solve all

polynomial equations ax2 +bx+c = 0 (in C, say), there is a cubic equation to solve

ax3+bx2+cx+d = 0, and there is a quartic equation to solve ax4+bx3+cx2+dx+e =

0. However, there is not a general algebraic equation which solves the quintic

ax5 + bx4 + cx3 + dx2 + ex + f = 0. We now have the equipment to establish

this “insolvability of the quintic,” as well as a way to classify which polynomial

equations can be solved algebraically (that is, using a finite sequence of operations

of addition [or subtraction], multiplication [or division], and taking of roots [or

raising to whole number powers]) in a field F .

Definition 56.1. An extension field K of a field F is an extension of F by radicals

if there are elements α1, α2, . . . , αr ∈ K and positive integers n1, n2, . . . , nr such that

K = F (α1, α2, . . . , αr), where αn1

1
∈ F and αni

i
∈ F (α1, α2, . . . , αi−1) for 1 < i ≤ r.

A polynomial f(x) ∈ F [x] is solvable by radicals over F if the splitting field E of

f(x) over F is contained in an extension of F by radicals.

Note. The idea in this definition is that F (α1) includes the n1th root of αn1

1
∈ F .

Then F (α1, α2) includes the n2th root of αn2

2
∈ F , and so forth. So any element

of F (α1, α2, . . . , αr) can be expressed as a finite number of operations of addition,

multiplication, and extraction of roots of elements of F . It is here that extension

fields meet up with the idea of algebraic solutions of polynomial equations!!!
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Note. For the remainder of this section, we assume that we are dealing with

fields of characteristic 0.

Note. The outline of this section is:

1. We will show that polynomial f(x) ∈ F [x] is solvable by radicals over F if

and only if its splitting field over F has a solvable Galois group. (We will not

actually prove the “if” part.)

2. We will show that there is a subfield F of the real numbers and a polynomial

f(x) ∈ F [x] of degree 5 with a splitting field E over F such that G(E/F ) ∼= S5.

Notice that S5 is not solvable, as shown in Example 35.19. Combining (1) (the

“only if” part) and (2) will yield the insolvability of the quintic.

Lemma 56.3. Let F be a field of characteristic 0, and let a ∈ F . If K is the

splitting field of xn − a over F , then G(K/F ) is a solvable group.

Theorem 56.4. Let F be a field of characteristic zero, and let F ≤ E ≤ K ≤ F ,

where E is a normal extension of F and K is an extension of F by radicals. Then

G(E/F ) is a solvable group.



X.56 Insolvability of the Quintic 3

Note 1. Here’s the idea behind Theorem 56.4. We will take F < R, find a

polynomial f(x) ∈ F [x], and let E be the splitting field of f(x). We then assume

that K is a field which is an extension of F by radicals that includes all of the zeros

of f(x). That is, we assume that f(x) is solvable by radicals and so the zeros are

contained in an extension by radicals of F , say K. Then it must be that G(E/F )

is solvable. So if G(E/F ) is not a solvable group, then f(x) is not solvable by

radicals. We will show there is a fifth degree f(x) with G(E/F ) ∼= S5. Since S5 is

not solvable (by Example 35.19), then f(x) is not solvable by radicals.

Note 2. We are now ready to prove our final goal: The Insolvability of the Quintic.

As previously mentioned, this means that there exists a fifth degree polynomial

which is not solvable by radicals. Of course, this does not mean that all fifth

degree polynomials are insolvable by radicals. For example, f(x) = x5 − x =

x(x − 1)(x + 1)(x2 + 1) is solvable by radicals—the zeroes are 0, 1, −1, i, −i. An

explicit example of a fifth degree polynomial that is not solvable by radicals over

Q is (as shown in Exercise 56.8c), f(x) = 2x5 − 5x4 + 5.

Note. Recall that α is algebraic over F if f(α) = 0 for some f(x) ∈ F [x], and α is

transcendental otherwise (Definition 29.3). If α is transcendental over F , then the

evaluation homomorphism φα maps F [x] to an integral domain, denoted F [α]. The

smallest field containing F and α (a field of quotients of F [α]) is denoted F (α).

This is explained in more detail in Section 29 (see page 270).
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Note. In an introductory analysis class, you will see that the cardinality of the

set of algebraic numbers in R is strictly less than the cardinality of the set of

transcendental numbers. The algebraic numbers form a “countable” set and the

transcendental numbers form an “uncountable” set. In fact, if α1 is transcendental,

then Q(α1) is countable. This implies that there is α2 transcendental over Q(α1),

there is α3 transcendental over Q(α1, α2), etc.

Definition. Let y1 ∈ R be transcendental over Q, y2 ∈ R transcendental over

Q(y1), y3 ∈ R transcendental over Q(y1, y2), and so forth. Such y1, y2, y3, . . . are

independent transcendental elements over Q.

Theorem 56.6. The Final Goal/Abel’s Theorem.

Let y1, y2, y3, y4, y5 be independent transcendental real numbers over Q. The poly-

nomial

f(x) =
5∏

i=1

(x − yi)

is not solvable by radicals over F = Q(s1, s2, s3, s4, s5) where si is the ith elementary

symmetric function in y1, y2, y3, y4, y5.

Proof. Let E = Q(y1, y2, y3, y4, y5) and let

f(x) =

5∏

i=1

(x − yi) = x5
− s1x

4 + s2x
3
− s3x

2 + s4x − s5

where

s1 = y1 + y2 + y3 + y4 + y5

s2 = y1y2 + y1y3 + y1y4 + y1y5 + y2y3 + y2y4 + y2y5 + y3y4 + y3y5 + y4y5
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s3 = y1y2y3 + y1y2y4 + y1y2y5 + y1y3y4 + y1y3y5 + y1y4y5

+y2y3y4 + y2y3y5 + y2y4y5 + y3y4y5

s4 = y1y2y3y4 + y1y2y3y5 + y1y2y4y5 + y1y3y4y5 + y2y3y4y5

s5 = y1y2y3y4y5,

the elementary symmetric functions in y1, y2, y3, y4, y5. Since s1, s2, s3, s4, s5 ∈

Q(y1, y2, y3, y4, y5) = E, then f(x) ∈ E[x]. Let F = Q(s1, s2, s3, s4, s5). Then

f(x) ∈ F [x] and Q ≤ F ≤ E. Now E is the splitting field over F of f(x) (notice

that E contains all zeros of f(x)). By Theorem 54.2 (with F = Q), the Galois

group G(E/F ) is isomorphic to S5. So G(E/F ) ∼= S5 is not solvable (by Example

35.19). Therefore, by Theorem 56.4 (really, by Note 1 above), f(x) is not solvable.

Note. The polynomial f(x) of Theorem 56.6 is not in Q[x]. As mentioned in Note

2 above, f(x) = 2x5 − 5x4 + 5 ∈ Q[x] is not solvable by radicals over Q. Hence we

have the result of Niels Henrik Abel of the 1820’s. There is an algebraic solution

to all first degree polynomial equations, all second degree polynomial equations

(“quadratics”), all third degree polynomial equations (“cubics”), and all fourth

degree polynomial equations (“quartics”). However, there is no algebraic equation

which gives the solution of an arbitrary fifth degree polynomial equation (“quin-

tic”). Now that’s what classical algebra is about!!!
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