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Theorem 1-3

Theorem 1-3. For F a field, the additive and multiplicative identities are
unique.
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Theorem 1-3, Uniqueness of identities

Theorem 1-3

Theorem 1-3. For F a field, the additive and multiplicative identities are

unique.

Proof. We give a proof for the additive identity and leave the (similar)

proof for the multiplicative identity as Exercise 1.2.1.
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Theorem 1-3

Theorem 1-3. For F a field, the additive and multiplicative identities are
unique.

Proof. We give a proof for the additive identity and leave the (similar)
proof for the multiplicative identity as Exercise 1.2.1.

Suppose both 0 and 0 are additive identities for field F. Then0 =0=0
since 0 is an additive identity. Also, 0 + 0 = 0 since 0 is an additive
identity. Therefore

0 = 040
= 0+ 0 since addition is commutative
in a field by property (3)
= 0.

That is, 0 = 0 and the additive identity is unique, as claimed. 0J
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Theorem 1.4

Theorem 1-4. For F a field and a € I, the additive and multiplicative
inverses of a are unique.
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Theorem 1-4. Uniqueness of inverses

Theorem 1.4

Theorem 1-4. For F a field and a € I, the additive and multiplicative
inverses of a are unique.

Proof. We give the proof for the multiplicative inverse and leave the proof
for the additive inverse to Exercise 2.1.1.
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Theorem 1.4

Theorem 1-4. For F a field and a € I, the additive and multiplicative
inverses of a are unique.

Proof. We give the proof for the multiplicative inverse and leave the proof
for the additive inverse to Exercise 2.1.1.

Let a € F, a # 0, and suppose both b and b are multiplicative inverses of
a. Thena-b=b-a=1landa-b=b-a=1. So
b = b-1since 1 is the multiplicative identity
= b-(a-b)since b is a multiplicative inverse of a
= (b-a)- b since multiplication is associative by field property (2)
= 1. bsince b is a multiplicative inverse of a
= b since 1 is the multiplicative identity.
That is, b = b and the multiplicative inverse of a is unique. Since a is an

arbitrary nonzero element of I, then the claim follows. Ol
Analysis 1 December 1, 2023 4 /19



Theorem 1-5. Multiplicative property of the additive identity

Theorem 1-5

Theorem 1-5. For IF a field, a-0 =0 for all a € F.
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Theorem 1-5. Multiplicative property of the additive identity

Theorem 1-5

Theorem 1-5. For IF a field, a-0 =0 for all a € F.

Proof. Let a € F. Then a+ 0 = a by field property (5). So

a-a = a-(a+0)
= a-a-+ a-0 by field property (4).

Now a - a has an additive inverse by field property (6), denoted —(a - a),
and adding this to both sides of the previous equation we have (by
commutivity, field property (3))

a-a+(—(a-a))=a-a+a-0+(—(a-a))=a-a+(—(a-a))+a-0,

which implies0 =0+ a-0 or 0 = a-0 (by field property (5)), as
claimed. O
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Theorem 1-6(c). Multiplicative properties of additive inverses

Theorem 1-6(c)

Theorem 1-6. For FF a field and a, b € F:
(a) a-(=b)=(-a)-b=—(a-b).
(b) —(~a) = a.
(c) (-a)-(=b)=a-b.
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Theorem 1-6(c). Multiplicative properties of additive inverses

Theorem 1-6(c)

Theorem 1-6. For FF a field and a, b € F:
(2) a-(~b)=(~2)-b=—(a-b).
(b) —(-a)=a.
(c) (-a)-(=b)=a-b.

Proof. (c) We have

0 = (—a)-0 Theorem 1-5
= (—a)-(b+ (—b)) by field property (6)
= (—a)-b+(—a)-(—b) by field property (4)
bi

This shows that (—a) - b is an additive inverse of (—a) - (—b).
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Theorem 1-6(c). Multiplicative properties of additive inverses

Theorem 1-6(c)

Theorem 1-6. For FF a field and a, b € F:
(a) a-(=b)=(-a)-b=—(a-b).
(b) —(~a) = a.
(c) (-a)-(=b)=a-b.

Proof. (c) We have

0 = (—a)-0 Theorem 1-5
= (—a)-(b+ (—b)) by field property (6)
= (—a)-b+(—a)-(—b) by field property (4)

This shows that (—a) - b is an additive inverse of (—a) - (—b). By part (a)
—(a-b) =(—a)- bsothat —(a- b) is an additive inverse of (—a) - (—b)

and, conversely, (—a) - (—b) is an additive inverse of —(a- b). But a- b is
also an additive inverse of —(a- b). By Theorem 1-4 additive inverses are
unique, so we must have a- b = (—a) - (—b), as claimed. O
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Exercise 1.2.5

Exercise 1.2.5. If F is an ordered field, a,b € F with a< band b< a
then a = b.

Analysis 1 December 1, 2023 7 /19



Exercise 1.2.5

Exercise 1.2.5. If F is an ordered field, a,b € F with a< band b< a
then a = b.

Proof. If a < b then either b—a &€ P or a= b. If b < a then either

a—be Pora=b. ASSUME a # b (we give a proof by contradiction).
Then it must be that both b—a€ P and a— b € P. But
(a— b) = —(b— a) since

(a—b)+(b—a) = a—b+b—a=a+ (—b+ b)— a by associativity,
field property (2)
= a+0—a=a—a=0 by field properties (5) & (6).
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Exercise 1.2.5

Exercise 1.2.5. If F is an ordered field, a,b € F with a< band b< a
then a = b.

Proof. If a < b then either b—a &€ P or a= b. If b < a then either
a—be Pora=b. ASSUME a # b (we give a proof by contradiction).
Then it must be that both b—a € Pand a— b € P. But

(a— b) = —(b— a) since

(a—b)+(b—a) = a—b+b—a=a+ (—b+ b)— a by associativity,
field property (2)
= a+0—a=a—a=0 by field properties (5) & (6).

But by the Law of Trichotomy, we cannot have both (b — a) € P and
(a— b) = —(b— a) € P since these are nonzero additive inverses of each
other, a CONTRADICTION. So the assumption that a # b is false and we
must have a = b, as claimed. O
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Theorem 1-7(b,c). Algebraic properties of an ordering

Theorem 1-7(b,c)

Theorem 1-7. Let F be an ordered field. For a, b, c € F:
(a) fa<bthena+c<b+ec.
(b) If a< band b< cthena< c ("<" is transitive).
(c) If a< band ¢ >0 then ac < bc.
(d) If a< band ¢ <0 then ac > bc.
(e) If a# 0then a> =a-a> 0.
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Theorem 1-7(b,c). Algebraic properties of an ordering

Theorem 1-7(b,c)

Theorem 1-7. Let F be an ordered field. For a, b, c € F:
(a) fa<bthena+c<b+ec.
(b) If a< band b< cthena< c ("<" is transitive).
(c) If a< band ¢ >0 then ac < bc.
(d) If a< band ¢ <0 then ac > bc.
(e) If a# 0then a> =a-a> 0.

Proof. (b) If a < b and b < c then, by definition of <, b—a € P and
¢ — b e P. Since P is closed under addition,
(b—a)+(c—b)=b—a+c—b=c—aec P sothat a < c as claimed.
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Theorem 1-7(b,c). Algebraic properties of an ordering

Theorem 1-7(b,c)

Theorem 1-7. Let F be an ordered field. For a, b, c € F:
(a) fa<bthena+c<b+ec.
(b) If a< band b< cthena< c ("<" is transitive).
(c) If a< band ¢ >0 then ac < bc.
(d) If a< band ¢ <0 then ac > bc.
(e) If a# 0then a> =a-a> 0.

Proof. (b) If a < b and b < c then, by definition of <, b—a € P and
¢ — b e P. Since P is closed under addition,
(b—a)+(c—b)=b—a+c—b=c—aec P sothat a < c as claimed.

(c) If a< b and ¢ > 0 then, by definition of < and >, b—a € P and

¢ —0=c € P. Since P is closed under multiplication, then (b — a)c € P.
Now, by distribution (field property (4)), (b — a)c = bc — ac so that

bc — ac € P or ac < bc, as claimed.
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Exercise 1.2.7

Exercise 1.2.7. Prove:
(a) 1>0.

(b) f0<a<bthen0<1/b<1/a.

(c) If 0 < a< bthen a" < b" for natural number n.

(d) If a>0, b >0 and a” < b" for some natural number n, then
a<b.

(e) For any real numbers a and b, we have |a| < |b]| if and only
if a2 < b2.

(f) Prove Theorem 1-10.
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Exercise 1.2.7

Exercise 1.2.7. Prove:
(a) 1>0.

(b) f0<a<bthen0<1/b<1/a.

(c) If 0 < a< bthen a" < b" for natural number n.

(d) If a>0, b >0 and a” < b" for some natural number n, then
a<b.

(e) For any real numbers a and b, we have |a| < |b]| if and only
if a2 < b2.

(f) Prove Theorem 1-10.

Proof. (a) By the Law of Trichotomy, either 1 < 0 (in which case

0—1=-1€P),1>0 (inwhichcase 1 —0=1€ P), or 1 = 0. Well,

1 # 0 (this is part of the definition of a field; see property (5)). ASSUME

1 <0sothat =1 € P. Then (—=1)(—1) =1 by Theorem 1-6(c) (we now

start omitting the " when multiplying). But if —1 € P, then

(=1)(—1) =1 € P, a CONTRADICTION to the Law of Trichotomy. So

the assumption that 1 < 0 is false and we must have 1 > 0. []
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Exercise 1.2.7 (continued 1)

Exercise 1.2.7. Prove:
(b) If0<a<bthen0<1/b<1/a
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Exercise 1.2.7 (continued 1)

Exercise 1.2.7. Prove:
(b) If0<a<bthen0<1/b<1/a

Proof (continued). (b) Suppose 0 < a < b. Then a,b,b—a € P.

Consider a= — b™! =1/a —1/b. We have

(b—a)a b = balbt—aalb! by distribution, field property (4)
= bb a7l —aa"1bh~! by commutivity, field property (3)
= lal—1bt=a!— b1 by field properties (5) & (7)
= 1/a—1/b.
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Exercise 1.2.7 (continued 1)

Exercise 1.2.7. Prove:
(b) If0<a<bthen0<1/b<1/a

Proof (continued). (b) Suppose 0 < a < b. Then a,b,b—a € P.
Consider a= — b™! =1/a —1/b. We have

(b—a)a b = balbt—aalb! by distribution, field property (4)
= bb a7l —aa"1bh~! by commutivity, field property (3)
= lal—1bt=a!— b1 by field properties (5) & (7)
= 1/a—1/b.

Now, for a > 0 we have a—1 > 0, for if not then we would have a=! < 0 by
the Law of Trichotomy and then a(—a=!) = —aa~! = —1 € P (since P is
closed under multiplication), a contradiction to part (a). So both a=! and
b~1 are in P. Therefore, (b—a)a b1 =1/a—1/b€ P (since P is
closed under multiplication) and 0 < 1/b < 1/a, as claimed. O
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Exercise 1.2.7 (continued 2)

Exercise 1.2.7. Prove:
(c) If 0 < a< bthen a" < b" for natural number n.

(d) If a> 0, b>0and a" < b" for some natural number n, then
a<b.
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Exercise 1.2.7 (continued 2)

Exercise 1.2.7. Prove:
(c) If 0 < a< bthen a" < b" for natural number n.

(d) If a> 0, b>0and a" < b" for some natural number n, then
a<b.

Proof (continued). (c) Suppose 0 < a < b. Then by Theorem 1-7(c),
aa < ab and ab < bb, or a> < ab < b? and the result holds for n = 1 and
n = 2. The general result holds by mathematical induction. O
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Exercise 1.2.7 (continued 2)

Exercise 1.2.7. Prove:
(c) If 0 < a< bthen a" < b" for natural number n.

(d) If a> 0, b>0and a" < b" for some natural number n, then
a<b.

Proof (continued). (c) Suppose 0 < a < b. Then by Theorem 1-7(c),
aa < ab and ab < bb, or a> < ab < b? and the result holds for n = 1 and
n = 2. The general result holds by mathematical induction. O

(d) ASSUME not. That is, suppose the hypotheses hold and ASSUME
a>b. If a= bthen a” = b" and we have a CONTRADICTION. If a> b
then a” > b" by part (c), and we have a CONTRADICTION. So the
assumption that a > b cannot hold, and we must have a < b, as

claimed. ]
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Exercise 1.2.7 (continued 3)

Exercise 1.2.7. Prove:

(e) For any real numbers a and b, we have |a| < |b]| if and only
if a2 < b2
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Exercise 1.2.7 (continued 3)

Exercise 1.2.7. Prove:

(e) For any real numbers a and b, we have |a| < |b]| if and only
if a2 < b2

Proof (continued). (e) First, if a =0 then 0 = |a| < |b| (by the
definition of absolute value) for all b, and a2 =0<b?forall b by
Theorem 1-7(e). If b =0 then |a| < |b| = 0 implies a = 0 (by the
definition of absolute value), and a®> < b®> =0 implies a =0 by Theorem
1-7(e). So the claims hold if either a= 0 or b =0, and we may now
assume without loss of generality that a and b are both nonzero. Notice
that for a # 0 we have a®> > 0 by Theorem 1-7(e), and by Theorem
1-13(d) |a?| = |a|?, so that a? = |a?| = |a|?> when a # 0.
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Exercise 1.2.7 (continued 3)

Exercise 1.2.7. Prove:

(e) For any real numbers a and b, we have |a| < |b]| if and only
if a2 < b2

Proof (continued). (e) First, if a =0 then 0 = |a| < |b| (by the
definition of absolute value) for all b, and a2 =0<b?forall b by
Theorem 1-7(e). If b =0 then |a| < |b| = 0 implies a = 0 (by the
definition of absolute value), and a®> < b®> =0 implies a =0 by Theorem
1-7(e). So the claims hold if either a= 0 or b =0, and we may now
assume without loss of generality that a and b are both nonzero. Notice
that for a # 0 we have a®> > 0 by Theorem 1-7(e), and by Theorem
1-13(d) |a?| = |a|?, so that a? = |a?| = |a|?> when a # 0.

Suppose |a| < |b| By Theorem 1-7(c) we have |a| - |a| < |b| - |a| and
|a| - |b| < |b| - |b|, which implies |a|?> < |a| - |b| < |b|2. As argued above,
a® = |a|? and (similarly) b? = |b|?, so we now have a?> < b?, as claimed.
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Exercise 1.2.7 (continued 4)

Exercise 1.2.7. Prove:
(e) For any real numbers a and b, we have |a| < |b]| if and only
if a2 < b2.
(f) Prove Theorem 1-10: Suppose 0 < x < y are real numbers,
and s = p/q is a rational number. Then x° < y*.

Proof. (e) (continued). Suppose a?> < b%. Then |a|? < |b|? and, since
|a| > 0 and |b| > 0, we have by part (d) with n = 2 that |a| < |b|, as
claimed.
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Exercise 1.2.7 (continued 4)

Exercise 1.2.7. Prove:
(e) For any real numbers a and b, we have |a| < |b]| if and only
if a2 < b2.
(f) Prove Theorem 1-10: Suppose 0 < x < y are real numbers,
and s = p/q is a rational number. Then x° < y*.

Proof. (e) (continued). Suppose a?> < b%. Then |a|? < |b|? and, since
|a| > 0 and |b| > 0, we have by part (d) with n = 2 that |a| < |b|, as
claimed.

(f) We have x* = (xP)Y/9 and y* = (yP)'/9 for some p,q € Z. Since
0 < x <y, then xP < y9 by part (c), and so

xP = (Xp)l/q)q < ((yp)l/q)q = yP.
Therefore by part (d), xP)Y/9 < (yP)/9, or x* < y*, as claimed. O
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Theorem 1-11

Theorem 1-11. For m,j € N with j < m we have
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Theorem 1-11

Theorem 1-11. For m,j € N with j < m we have

(7)+Gm)= (")
A ol = . .
J -1 J
Proof. We have

(T) i Q‘T1> - j!(mmij)! TR —’T))!(J—l)!

B ml(m+1—j) mlj
M m = m+1-j)  (m+1=)IG 1Y
m!((m—i—l—j)—i—j): (m+1)! :<m—|—1>.
(m+1-j)5  (mri-pj  \ j

O
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Theorem 1-12

Theorem 1-12. The Binomial Theorem.
Let a and b be real numbers and let m € N. Then

(a+b)" = Zm: (T) ™.

Jj=0
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Theorem 1-12

Theorem 1-12. The Binomial Theorem.
Let a and b be real numbers and let m € N. Then

(a+b)" = sz; (T) ™.

Proof. We give a proof based on mathematical induction. For the base
case m = 1 we have

i(})afb”: <é>b+ <1>a:b+a:(a+b)1_

Jj=0
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Theorem 1-12

Theorem 1-12. The Binomial Theorem.
Let a and b be real numbers and let m € N. Then

(a+b)" = sz; (T) ™.

Proof. We give a proof based on mathematical induction. For the base
case m = 1 we have

i(})afb”: <é>b+ <1>a:b+a:(a+b)1_

Jj=0

For the induction hypothesis, suppose the claim holds for m = k and that

(a b) g WECS

Consider the case m = k + 1.
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Theorem 1-12 (continued 1)

Proof (continued). We have

k
(a+ b) = (a+b) (a+b)= Z(k)a"bk—f (a+b)
=0 M

by the induction hypothesis

Kk Kk
— Z()aj+1bkj+z<>ajbk+lj
J = \J

=0

k+1 k k k
_ 0 k—0+1 k+1 j 1 k+1—j
- b b P

2. <e - 1> ? FHT D <j >

/=1 j=0

where / = j+1sothat j=¢—1

ok Lk

_ 0 k—0+1 k+1 k+1 j k+1—j
- ;(E_Jab +a b +Z;<j>a’b /

= Jj=
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Theorem 1-12 (continued 2)

Proof (continued). We have

k k
K\ o K\ o q
(a+b)H = 1Y Q__l>afbk“f+§ (.)ybk“erbk“
=1

=0 M
replacing ¢ with j

k k k
= () () A e
j=1

k1N -
= ! —|—Z ( ) >a’bk+1_f by Theorem 1-11

j=1
k+1

S (k + 1>afbk+1f.
p J
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Theorem 1-12 (continued 3)

Theorem 1-12. The Binomial Theorem.
Let a and b be real numbers and let m € N. Then

(a+b)" = zm: ('7.7>afbm—f.

=0 M
Proof (continued). The last equality holds because
ki1 _ (KH1Y ki1p0 k1 _ (KLY o ki1 -
a“ " b” and b = a 'b*"". So the claim holds

k1 0
for m = k 4+ 1 and the induction step has been established. Therefore, by

the Principle of Mathematical Induction, the claim holds for all m € N. [
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Theorem 1-13(h)

Theorem 1-13. For all a,b € R
(g) |al < |b| if and only if —b < a < b.
(h) |a+ b| < |a| + |b| (this is the Triangle Inequality).
(i) Ilal = [b]| <fa = bl.
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Theorem 1-13(h). Triangle Inequality

Theorem 1-13(h)

Theorem 1-13. For all a,b € R
(g) |al < |b| if and only if —b < a < b.
(h) |a+ b| < |a| + |b| (this is the Triangle Inequality).
(i) Ilal = [b]| <fa = bl.

Proof. (h) By part (c), —|a] < a < |a] and —|b| < b < |b|. So

—la| — |b] < a+ b < |a| + |b| by Exercise 1.2.4(a)

or
—(lal + [b]) < a+ b < |a] +|b],
o)
|a+ b| < |a] + |b] by part (g),
as claimed.
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