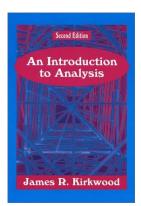
Analysis 1

Chapter 1. The Real Number System 1-2. Properties of the Real Numbers as an Ordered Field—Proofs of Theorems



Analysis 1

Table of contents

- 1 Theorem 1-3, Uniqueness of identities
- 2 Theorem 1-4. Uniqueness of inverses
- 3 Theorem 1-5. Multiplicative property of the additive identity
- Theorem 1-6(c). Multiplicative properties of additive inverses
- 5 Exercise 1.2.5
- Theorem 1-7(b,c). Algebraic properties of an ordering
- Exercise 1.2.7. More properties of orderings; orderings and exponents
- Theorem 1-11. A property of binomial coefficients
- Theorem 1-12. The Binomial Theorem
- Theorem 1-13(h). Triangle Inequality

Theorem 1-3. For $\mathbb F$ a field, the additive and multiplicative identities are unique.

Proof. We give a proof for the additive identity and leave the (similar) proof for the multiplicative identity as Exercise 1.2.1.

Theorem 1-3. For $\mathbb F$ a field, the additive and multiplicative identities are unique.

Proof. We give a proof for the additive identity and leave the (similar) proof for the multiplicative identity as Exercise 1.2.1.

Suppose both 0 and $\overline{0}$ are additive identities for field \mathbb{F} . Then $\overline{0} = 0 = \overline{0}$ since 0 is an additive identity. Also, $0 + \overline{0} = 0$ since $\overline{0}$ is an additive identity. Therefore

$$\overline{0} = \overline{0} + 0$$

= $0 + \overline{0}$ since addition is commutative
in a field by property (3)
= 0.

That is, $0 = \overline{0}$ and the additive identity is unique, as claimed.

Theorem 1-3. For $\mathbb F$ a field, the additive and multiplicative identities are unique.

Proof. We give a proof for the additive identity and leave the (similar) proof for the multiplicative identity as Exercise 1.2.1.

Suppose both 0 and $\overline{0}$ are additive identities for field \mathbb{F} . Then $\overline{0} = 0 = \overline{0}$ since 0 is an additive identity. Also, $0 + \overline{0} = 0$ since $\overline{0}$ is an additive identity. Therefore

$$\overline{0} = \overline{0} + 0$$

= $0 + \overline{0}$ since addition is commutative
in a field by property (3)
= 0.

That is, $0 = \overline{0}$ and the additive identity is unique, as claimed.

Theorem 1.4

Theorem 1-4. For \mathbb{F} a field and $a \in \mathbb{F}$, the additive and multiplicative inverses of *a* are unique.

Proof. We give the proof for the multiplicative inverse and leave the proof for the additive inverse to Exercise 2.1.1.

Theorem 1.4

Theorem 1-4. For \mathbb{F} a field and $a \in \mathbb{F}$, the additive and multiplicative inverses of *a* are unique.

Proof. We give the proof for the multiplicative inverse and leave the proof for the additive inverse to Exercise 2.1.1.

Let $a \in \mathbb{F}$, $a \neq 0$, and suppose both b and \overline{b} are multiplicative inverses of a. Then $a \cdot b = b \cdot a = 1$ and $a \cdot \overline{b} = \overline{b} \cdot a = 1$. So

- $\overline{b} = \overline{b} \cdot 1$ since 1 is the multiplicative identity
 - = $\overline{b} \cdot (a \cdot b)$ since b is a multiplicative inverse of a
 - = $(\overline{b} \cdot a) \cdot b$ since multiplication is associative by field property (2)
 - = 1 · *b* since \overline{b} is a multiplicative inverse of *a*
 - = b since 1 is the multiplicative identity.

That is, $b = \overline{b}$ and the multiplicative inverse of a is unique. Since a is an arbitrary nonzero element of \mathbb{F} , then the claim follows.

Theorem 1.4

Theorem 1-4. For \mathbb{F} a field and $a \in \mathbb{F}$, the additive and multiplicative inverses of *a* are unique.

Proof. We give the proof for the multiplicative inverse and leave the proof for the additive inverse to Exercise 2.1.1.

Let $a \in \mathbb{F}$, $a \neq 0$, and suppose both b and \overline{b} are multiplicative inverses of a. Then $a \cdot b = b \cdot a = 1$ and $a \cdot \overline{b} = \overline{b} \cdot a = 1$. So

- $\overline{b} = \overline{b} \cdot 1$ since 1 is the multiplicative identity
 - = $\overline{b} \cdot (a \cdot b)$ since b is a multiplicative inverse of a
 - = $(\overline{b} \cdot a) \cdot b$ since multiplication is associative by field property (2)
 - = 1 · b since \overline{b} is a multiplicative inverse of a
 - = b since 1 is the multiplicative identity.

That is, $b = \overline{b}$ and the multiplicative inverse of *a* is unique. Since *a* is an arbitrary nonzero element of \mathbb{F} , then the claim follows.

Theorem 1-5. For \mathbb{F} a field, $a \cdot 0 = 0$ for all $a \in \mathbb{F}$.

Proof. Let $a \in \mathbb{F}$. Then a + 0 = a by field property (5). So

$$a \cdot a = a \cdot (a + 0)$$

= $a \cdot a + a \cdot 0$ by field property (4).

Now $a \cdot a$ has an additive inverse by field property (6), denoted $-(a \cdot a)$, and adding this to both sides of the previous equation we have (by commutivity, field property (3))

$$a \cdot a + (-(a \cdot a)) = a \cdot a + a \cdot 0 + (-(a \cdot a)) = a \cdot a + (-(a \cdot a)) + a \cdot 0,$$

which implies $0 = 0 + a \cdot 0$ or $0 = a \cdot 0$ (by field property (5)), as claimed.

Theorem 1-5. For \mathbb{F} a field, $a \cdot 0 = 0$ for all $a \in \mathbb{F}$.

Proof. Let $a \in \mathbb{F}$. Then a + 0 = a by field property (5). So

$$a \cdot a = a \cdot (a + 0)$$

= $a \cdot a + a \cdot 0$ by field property (4).

Now $a \cdot a$ has an additive inverse by field property (6), denoted $-(a \cdot a)$, and adding this to both sides of the previous equation we have (by commutivity, field property (3))

$$a \cdot a + (-(a \cdot a)) = a \cdot a + a \cdot 0 + (-(a \cdot a)) = a \cdot a + (-(a \cdot a)) + a \cdot 0,$$

which implies $0 = 0 + a \cdot 0$ or $0 = a \cdot 0$ (by field property (5)), as claimed.

Theorem 1-6(c)

Theorem 1-6. For \mathbb{F} a field and $a, b \in \mathbb{F}$:

(a)
$$a \cdot (-b) = (-a) \cdot b = -(a \cdot b).$$

(b) $-(-a) = a.$
(c) $(-a) \cdot (-b) = a \cdot b.$

Proof. (c) We have

$$0 = (-a) \cdot 0 \text{ Theorem 1-5}$$

= $(-a) \cdot (b + (-b))$ by field property (6)
= $(-a) \cdot b + (-a) \cdot (-b)$ by field property (4)

This shows that $(-a) \cdot b$ is an additive inverse of $(-a) \cdot (-b)$.

Theorem 1-6(c)

Theorem 1-6. For \mathbb{F} a field and $a, b \in \mathbb{F}$:

(a)
$$a \cdot (-b) = (-a) \cdot b = -(a \cdot b).$$

(b) $-(-a) = a.$
(c) $(-a) \cdot (-b) = a \cdot b.$

Proof. (c) We have

$$0 = (-a) \cdot 0 \text{ Theorem 1-5}$$

= $(-a) \cdot (b + (-b))$ by field property (6)
= $(-a) \cdot b + (-a) \cdot (-b)$ by field property (4)

This shows that $(-a) \cdot b$ is an additive inverse of $(-a) \cdot (-b)$. By part (a) $-(a \cdot b) = (-a) \cdot b$ so that $-(a \cdot b)$ is an additive inverse of $(-a) \cdot (-b)$ and, conversely, $(-a) \cdot (-b)$ is an additive inverse of $-(a \cdot b)$. But $a \cdot b$ is also an additive inverse of $-(a \cdot b)$. By Theorem 1-4 additive inverses are unique, so we must have $a \cdot b = (-a) \cdot (-b)$, as claimed.

Theorem 1-6(c)

Theorem 1-6. For \mathbb{F} a field and $a, b \in \mathbb{F}$:

(a)
$$a \cdot (-b) = (-a) \cdot b = -(a \cdot b).$$

(b) $-(-a) = a.$
(c) $(-a) \cdot (-b) = a \cdot b.$

Proof. (c) We have

$$0 = (-a) \cdot 0 \text{ Theorem 1-5}$$

= $(-a) \cdot (b + (-b))$ by field property (6)
= $(-a) \cdot b + (-a) \cdot (-b)$ by field property (4)

This shows that $(-a) \cdot b$ is an additive inverse of $(-a) \cdot (-b)$. By part (a) $-(a \cdot b) = (-a) \cdot b$ so that $-(a \cdot b)$ is an additive inverse of $(-a) \cdot (-b)$ and, conversely, $(-a) \cdot (-b)$ is an additive inverse of $-(a \cdot b)$. But $a \cdot b$ is also an additive inverse of $-(a \cdot b)$. By Theorem 1-4 additive inverses are unique, so we must have $a \cdot b = (-a) \cdot (-b)$, as claimed.

Exercise 1.2.5. If \mathbb{F} is an ordered field, $a, b \in \mathbb{F}$ with $a \leq b$ and $b \leq a$ then a = b.

Proof. If $a \le b$ then either $b - a \in P$ or a = b. If $b \le a$ then either $a - b \in P$ or a = b. ASSUME $a \ne b$ (we give a proof by contradiction). Then it must be that both $b - a \in P$ and $a - b \in P$. But (a - b) = -(b - a) since

$$(a-b)+(b-a) = a-b+b-a = a+(-b+b)-a$$
 by associativity,
field property (2)

= a + 0 - a = a - a = 0 by field properties (5) & (6).

Exercise 1.2.5. If \mathbb{F} is an ordered field, $a, b \in \mathbb{F}$ with $a \leq b$ and $b \leq a$ then a = b.

Proof. If $a \le b$ then either $b - a \in P$ or a = b. If $b \le a$ then either $a - b \in P$ or a = b. ASSUME $a \ne b$ (we give a proof by contradiction). Then it must be that both $b - a \in P$ and $a - b \in P$. But (a - b) = -(b - a) since

$$(a-b) + (b-a) = a-b+b-a = a + (-b+b) - a$$
 by associativity,
field property (2)
$$= a+0-a = a-a = 0$$
 by field properties (5) & (6).

But by the Law of Trichotomy, we cannot have both $(b - a) \in P$ and $(a - b) = -(b - a) \in P$ since these are nonzero additive inverses of each other, a CONTRADICTION. So the assumption that $a \neq b$ is false and we must have a = b, as claimed.

Exercise 1.2.5. If \mathbb{F} is an ordered field, $a, b \in \mathbb{F}$ with $a \leq b$ and $b \leq a$ then a = b.

Proof. If $a \le b$ then either $b - a \in P$ or a = b. If $b \le a$ then either $a - b \in P$ or a = b. ASSUME $a \ne b$ (we give a proof by contradiction). Then it must be that both $b - a \in P$ and $a - b \in P$. But (a - b) = -(b - a) since

$$(a-b) + (b-a) = a-b+b-a = a + (-b+b) - a$$
 by associativity,
field property (2)
$$= a+0-a = a-a = 0$$
 by field properties (5) & (6).

But by the Law of Trichotomy, we cannot have both $(b - a) \in P$ and $(a - b) = -(b - a) \in P$ since these are nonzero additive inverses of each other, a CONTRADICTION. So the assumption that $a \neq b$ is false and we must have a = b, as claimed.

Theorem 1-7(b,c)

Theorem 1-7. Let \mathbb{F} be an ordered field. For $a, b, c \in \mathbb{F}$:

Proof. (b) If a < b and b < c then, by definition of <, $b - a \in P$ and $c - b \in P$. Since P is closed under addition,

 $(b-a) + (c-b) = b - a + c - b = c - a \in P$ so that a < c as claimed.

Theorem 1-7(b,c)

Theorem 1-7. Let \mathbb{F} be an ordered field. For $a, b, c \in \mathbb{F}$:

Proof. (b) If a < b and b < c then, by definition of <, $b - a \in P$ and $c - b \in P$. Since P is closed under addition, $(b-a) + (c-b) = b - a + c - b = c - a \in P$ so that a < c as claimed.

(c) If a < b and c > 0 then, by definition of < and >, $b - a \in P$ and $c - 0 = c \in P$. Since P is closed under multiplication, then $(b - a)c \in P$. Now, by distribution (field property (4)), (b - a)c = bc - ac so that $bc - ac \in P$ or ac < bc, as claimed.

Theorem 1-7(b,c)

Theorem 1-7. Let \mathbb{F} be an ordered field. For $a, b, c \in \mathbb{F}$:

Proof. (b) If a < b and b < c then, by definition of <, $b - a \in P$ and $c - b \in P$. Since P is closed under addition, $(b - a) + (c - b) = b - a + c - b = c - a \in P$ so that a < c as claimed. **(c)** If a < b and c > 0 then, by definition of < and >, $b - a \in P$ and $c - 0 = c \in P$. Since P is closed under multiplication, then $(b - a)c \in P$. Now, by distribution (field property (4)), (b - a)c = bc - ac so that $bc - ac \in P$ or ac < bc, as claimed.

Exercise 1.2.7. Prove:

(e) For any real numbers *a* and *b*, we have $|a| \le |b|$ if and only if $a^2 \le b^2$.

(f) Prove Theorem 1-10.

Proof. (a) By the Law of Trichotomy, either 1 < 0 (in which case $0 - 1 = -1 \in P$), 1 > 0 (in which case $1 - 0 = 1 \in P$), or 1 = 0. Well, $1 \neq 0$ (this is part of the definition of a field; see property (5)). ASSUME 1 < 0 so that $-1 \in P$. Then (-1)(-1) = 1 by Theorem 1-6(c) (we now start omitting the "·" when multiplying). But if $-1 \in P$, then $(-1)(-1) = 1 \in P$, a CONTRADICTION to the Law of Trichotomy. So the assumption that 1 < 0 is false and we must have 1 > 0.

Exercise 1.2.7. Prove:

(e) For any real numbers *a* and *b*, we have $|a| \le |b|$ if and only if $a^2 \le b^2$.

(f) Prove Theorem 1-10.

Proof. (a) By the Law of Trichotomy, either 1 < 0 (in which case $0 - 1 = -1 \in P$), 1 > 0 (in which case $1 - 0 = 1 \in P$), or 1 = 0. Well, $1 \neq 0$ (this is part of the definition of a field; see property (5)). ASSUME 1 < 0 so that $-1 \in P$. Then (-1)(-1) = 1 by Theorem 1-6(c) (we now start omitting the "·" when multiplying). But if $-1 \in P$, then $(-1)(-1) = 1 \in P$, a CONTRADICTION to the Law of Trichotomy. So the assumption that 1 < 0 is false and we must have 1 > 0.

Exercise 1.2.7 (continued 1)

Exercise 1.2.7. Prove:

(b) If 0 < a < b then 0 < 1/b < 1/a.

Proof (continued). (b) Suppose 0 < a < b. Then $a, b, b - a \in P$. Consider $a^{-1} - b^{-1} = 1/a - 1/b$. We have

 $(b-a)a^{-1}b^{-1} = ba^{-1}b^{-1} - aa^{-1}b^{-1}$ by distribution, field property (4) = $bb^{-1}a^{-1} - aa^{-1}b^{-1}$ by commutivity, field property (3) = $1a^{-1} - 1b^{-1} = a^{-1} - b^{-1}$ by field properties (5) & (7) = 1/a - 1/b. exponents

Exercise 1.2.7 (continued 1)

Exercise 1.2.7. Prove:

(b) If 0 < a < b then 0 < 1/b < 1/a.

Proof (continued). (b) Suppose 0 < a < b. Then $a, b, b - a \in P$. Consider $a^{-1} - b^{-1} = 1/a - 1/b$. We have

$$(b-a)a^{-1}b^{-1} = ba^{-1}b^{-1} - aa^{-1}b^{-1}$$
 by distribution, field property (4)
= $bb^{-1}a^{-1} - aa^{-1}b^{-1}$ by commutivity, field property (3)
= $1a^{-1} - 1b^{-1} = a^{-1} - b^{-1}$ by field properties (5) & (7)
= $1/a - 1/b$.

Now, for a > 0 we have $a^{-1} > 0$, for if not then we would have $a^{-1} < 0$ by the Law of Trichotomy and then $a(-a^{-1}) = -aa^{-1} = -1 \in P$ (since *P* is closed under multiplication), a contradiction to part (a). So both a^{-1} and b^{-1} are in *P*. Therefore, $(b-a)a^{-1}b^{-1} = 1/a - 1/b \in P$ (since *P* is closed under multiplication) and 0 < 1/b < 1/a, as claimed.

exponents

Exercise 1.2.7 (continued 1)

Exercise 1.2.7. Prove:

(b) If 0 < a < b then 0 < 1/b < 1/a.

Proof (continued). (b) Suppose 0 < a < b. Then $a, b, b - a \in P$. Consider $a^{-1} - b^{-1} = 1/a - 1/b$. We have

$$(b-a)a^{-1}b^{-1} = ba^{-1}b^{-1} - aa^{-1}b^{-1}$$
by distribution, field property (4)
= $bb^{-1}a^{-1} - aa^{-1}b^{-1}$ by commutivity, field property (3)
= $1a^{-1} - 1b^{-1} = a^{-1} - b^{-1}$ by field properties (5) & (7)
= $1/a - 1/b$.

Now, for a > 0 we have $a^{-1} > 0$, for if not then we would have $a^{-1} < 0$ by the Law of Trichotomy and then $a(-a^{-1}) = -aa^{-1} = -1 \in P$ (since *P* is closed under multiplication), a contradiction to part (a). So both a^{-1} and b^{-1} are in *P*. Therefore, $(b-a)a^{-1}b^{-1} = 1/a - 1/b \in P$ (since *P* is closed under multiplication) and 0 < 1/b < 1/a, as claimed.

Exercise 1.2.7 (continued 2)

Exercise 1.2.7. Prove:

(c) If 0 < a < b then aⁿ < bⁿ for natural number n.
(d) If a > 0, b > 0 and aⁿ < bⁿ for some natural number n, then a < b.

Proof (continued). (c) Suppose 0 < a < b. Then by Theorem 1-7(c), aa < ab and ab < bb, or $a^2 < ab < b^2$ and the result holds for n = 1 and n = 2. The general result holds by mathematical induction.

Exercise 1.2.7 (continued 2)

Exercise 1.2.7. Prove:

(c) If 0 < a < b then aⁿ < bⁿ for natural number n.
(d) If a > 0, b > 0 and aⁿ < bⁿ for some natural number n, then a < b.

Proof (continued). (c) Suppose 0 < a < b. Then by Theorem 1-7(c), aa < ab and ab < bb, or $a^2 < ab < b^2$ and the result holds for n = 1 and n = 2. The general result holds by mathematical induction.

(d) ASSUME not. That is, suppose the hypotheses hold and ASSUME $a \ge b$. If a = b then $a^n = b^n$ and we have a CONTRADICTION. If a > b then $a^n > b^n$ by part (c), and we have a CONTRADICTION. So the assumption that $a \ge b$ cannot hold, and we must have a < b, as claimed.

Exercise 1.2.7 (continued 2)

Exercise 1.2.7. Prove:

(c) If 0 < a < b then aⁿ < bⁿ for natural number n.
(d) If a > 0, b > 0 and aⁿ < bⁿ for some natural number n, then a < b.

Proof (continued). (c) Suppose 0 < a < b. Then by Theorem 1-7(c), aa < ab and ab < bb, or $a^2 < ab < b^2$ and the result holds for n = 1 and n = 2. The general result holds by mathematical induction.

(d) ASSUME not. That is, suppose the hypotheses hold and ASSUME $a \ge b$. If a = b then $a^n = b^n$ and we have a CONTRADICTION. If a > b then $a^n > b^n$ by part (c), and we have a CONTRADICTION. So the assumption that $a \ge b$ cannot hold, and we must have a < b, as claimed.

Exercise 1.2.7 (continued 3)

Exercise 1.2.7. Prove:

(e) For any real numbers *a* and *b*, we have $|a| \le |b|$ if and only if $a^2 \le b^2$.

Proof (continued). (e) First, if a = 0 then $0 = |a| \le |b|$ (by the definition of absolute value) for all b, and $a^2 = 0 \le b^2$ for all b by Theorem 1-7(e). If b = 0 then $|a| \le |b| = 0$ implies a = 0 (by the definition of absolute value), and $a^2 \le b^2 = 0$ implies a = 0 by Theorem 1-7(e). So the claims hold if either a = 0 or b = 0, and we may now assume without loss of generality that a and b are both nonzero. Notice that for $a \ne 0$ we have $a^2 > 0$ by Theorem 1-7(e), and by Theorem 1-13(d) $|a^2| = |a|^2$, so that $a^2 = |a^2| = |a|^2$ when $a \ne 0$.

Exercise 1.2.7 (continued 3)

Exercise 1.2.7. Prove:

(e) For any real numbers *a* and *b*, we have $|a| \le |b|$ if and only if $a^2 \le b^2$.

Proof (continued). (e) First, if a = 0 then $0 = |a| \le |b|$ (by the definition of absolute value) for all b, and $a^2 = 0 \le b^2$ for all b by Theorem 1-7(e). If b = 0 then $|a| \le |b| = 0$ implies a = 0 (by the definition of absolute value), and $a^2 \le b^2 = 0$ implies a = 0 by Theorem 1-7(e). So the claims hold if either a = 0 or b = 0, and we may now assume without loss of generality that a and b are both nonzero. Notice that for $a \ne 0$ we have $a^2 > 0$ by Theorem 1-7(e), and by Theorem 1-13(d) $|a^2| = |a|^2$, so that $a^2 = |a^2| = |a|^2$ when $a \ne 0$.

Suppose $|a| \le |b|$ By Theorem 1-7(c) we have $|a| \cdot |a| \le |b| \cdot |a|$ and $|a| \cdot |b| \le |b| \cdot |b|$, which implies $|a|^2 \le |a| \cdot |b| \le |b|^2$. As argued above, $a^2 = |a|^2$ and (similarly) $b^2 = |b|^2$, so we now have $a^2 \le b^2$, as claimed.

Exercise 1.2.7 (continued 3)

Exercise 1.2.7. Prove:

(e) For any real numbers *a* and *b*, we have $|a| \le |b|$ if and only if $a^2 \le b^2$.

Proof (continued). (e) First, if a = 0 then $0 = |a| \le |b|$ (by the definition of absolute value) for all b, and $a^2 = 0 \le b^2$ for all b by Theorem 1-7(e). If b = 0 then $|a| \le |b| = 0$ implies a = 0 (by the definition of absolute value), and $a^2 \le b^2 = 0$ implies a = 0 by Theorem 1-7(e). So the claims hold if either a = 0 or b = 0, and we may now assume without loss of generality that a and b are both nonzero. Notice that for $a \ne 0$ we have $a^2 > 0$ by Theorem 1-7(e), and by Theorem 1-13(d) $|a^2| = |a|^2$, so that $a^2 = |a^2| = |a|^2$ when $a \ne 0$.

Suppose $|a| \leq |b|$ By Theorem 1-7(c) we have $|a| \cdot |a| \leq |b| \cdot |a|$ and $|a| \cdot |b| \leq |b| \cdot |b|$, which implies $|a|^2 \leq |a| \cdot |b| \leq |b|^2$. As argued above, $a^2 = |a|^2$ and (similarly) $b^2 = |b|^2$, so we now have $a^2 \leq b^2$, as claimed.

Exercise 1.2.7 (continued 4)

Exercise 1.2.7. Prove:

- (e) For any real numbers *a* and *b*, we have $|a| \le |b|$ if and only if $a^2 \le b^2$.
- (f) Prove Theorem 1-10: Suppose 0 < x < y are real numbers, and s = p/q is a rational number. Then $x^s < y^s$.

Proof. (e) (continued). Suppose $a^2 \le b^2$. Then $|a|^2 \le |b|^2$ and, since |a| > 0 and |b| > 0, we have by part (d) with n = 2 that |a| < |b|, as claimed.

(f) We have $x^s = (x^p)^{1/q}$ and $y^s = (y^p)^{1/q}$ for some $p, q \in \mathbb{Z}$. Since 0 < x < y, then $x^p < y^q$ by part (c), and so

$$x^{p} = (x^{p})^{1/q})^{q} < ((y^{p})^{1/q})^{q} = y^{p}.$$

Therefore by part (d), $x^p)^{1/q} < (y^p)^{1/q}$, or $x^s < y^s$, as claimed.

Exercise 1.2.7 (continued 4)

Exercise 1.2.7. Prove:

- (e) For any real numbers *a* and *b*, we have $|a| \le |b|$ if and only if $a^2 \le b^2$.
- (f) Prove Theorem 1-10: Suppose 0 < x < y are real numbers, and s = p/q is a rational number. Then $x^s < y^s$.

Proof. (e) (continued). Suppose $a^2 \le b^2$. Then $|a|^2 \le |b|^2$ and, since |a| > 0 and |b| > 0, we have by part (d) with n = 2 that |a| < |b|, as claimed.

(f) We have $x^s = (x^p)^{1/q}$ and $y^s = (y^p)^{1/q}$ for some $p, q \in \mathbb{Z}$. Since 0 < x < y, then $x^p < y^q$ by part (c), and so

$$x^{p} = (x^{p})^{1/q})^{q} < ((y^{p})^{1/q})^{q} = y^{p}.$$

Therefore by part (d), $x^p)^{1/q} < (y^p)^{1/q}$, or $x^s < y^s$, as claimed.

Theorem 1-11. For $m, j \in \mathbb{N}$ with $j \leq m$ we have

$$\binom{m}{j} + \binom{m}{j-1} = \binom{m+1}{j}.$$

Proof. We have

$$\binom{m}{j} + \binom{m}{j-1} = \frac{m!}{j!(m-j)!} + \frac{m!}{(m-(j-1))!(j-1)!}$$

$$= \frac{m!(m+1-j)}{j!(m-j)!(m+1-j)} + \frac{m!j}{(m+1-j)!(j-1)!j}$$

$$= \frac{m!((m+1-j)+j)}{(m+1-j)!j!} = \frac{(m+1)!}{(m+1-j)!j!} = \binom{m+1}{j}.$$

Theorem 1-11. For $m, j \in \mathbb{N}$ with $j \leq m$ we have

$$\binom{m}{j} + \binom{m}{j-1} = \binom{m+1}{j}.$$

Proof. We have

$$\binom{m}{j} + \binom{m}{j-1} = \frac{m!}{j!(m-j)!} + \frac{m!}{(m-(j-1))!(j-1)!}$$

$$= \frac{m!(m+1-j)}{j!(m-j)!(m+1-j)} + \frac{m!j}{(m+1-j)!(j-1)!j}$$

$$= \frac{m!((m+1-j)+j)}{(m+1-j)!j!} = \frac{(m+1)!}{(m+1-j)!j!} = \binom{m+1}{j}.$$

Theorem 1-12. The Binomial Theorem.

Let *a* and *b* be real numbers and let $m \in \mathbb{N}$. Then

$$(a+b)^m = \sum_{j=0}^m \binom{m}{j} a^j b^{m-j}.$$

Proof. We give a proof based on mathematical induction. For the base case m = 1 we have

$$\sum_{j=0}^{1} \binom{1}{j} a^{j} b^{1-j} = \binom{1}{0} b + \binom{1}{1} a = b + a = (a+b)^{1}.$$

Theorem 1-12. The Binomial Theorem.

Let *a* and *b* be real numbers and let $m \in \mathbb{N}$. Then

$$(a+b)^m = \sum_{j=0}^m \binom{m}{j} a^j b^{m-j}.$$

Proof. We give a proof based on mathematical induction. For the base case m = 1 we have

$$\sum_{j=0}^{1} \binom{1}{j} a^{j} b^{1-j} = \binom{1}{0} b + \binom{1}{1} a = b + a = (a+b)^{1}.$$

For the induction hypothesis, suppose the claim holds for m = k and that

$$(a+b)^{=}\sum_{j=0}^{k} \binom{k}{j} a^{j} b^{k-j}.$$

Consider the case m = k + 1.

Theorem 1-12. The Binomial Theorem.

Let *a* and *b* be real numbers and let $m \in \mathbb{N}$. Then

$$(a+b)^m = \sum_{j=0}^m \binom{m}{j} a^j b^{m-j}.$$

Proof. We give a proof based on mathematical induction. For the base case m = 1 we have

$$\sum_{j=0}^{1} \binom{1}{j} a^{j} b^{1-j} = \binom{1}{0} b + \binom{1}{1} a = b + a = (a+b)^{1}.$$

For the induction hypothesis, suppose the claim holds for m = k and that

$$(a+b)^{=}\sum_{j=0}^{k} \binom{k}{j} a^{j} b^{k-j}.$$

Consider the case m = k + 1.

Theorem 1-12 (continued 1)

Proof (continued). We have

$$(a+b)^{k+1} = (a+b)^k(a+b) = \left(\sum_{j=0}^k \binom{k}{j} a^j b^{k-j}\right)(a+b)$$

by the induction hypothesis

$$= \sum_{j=0}^{k} {\binom{k}{j}} a^{j+1} b^{k-j} + \sum_{j=0}^{k} {\binom{k}{j}} a^{j} b^{k+1-j}$$

$$= \sum_{\ell=1}^{k+1} {\binom{k}{\ell-1}} a^{\ell} b^{k-\ell+1} + b^{k+1} + \sum_{j=0}^{k} {\binom{k}{j}} a^{j} b^{k+1-j}$$
where $\ell = j+1$ so that $j = \ell - 1$

$$= \sum_{\ell=1}^{k} {\binom{k}{\ell-1}} a^{\ell} b^{k-\ell+1} + a^{k+1} + b^{k+1} + \sum_{j=0}^{k} {\binom{k}{j}} a^{j} b^{k+1-j}$$

Theorem 1-12 (continued 2)

Proof (continued). We have

$$(a+b)^{k+1} = a^{k+1} \sum_{j=1}^{k} {\binom{k}{j-1}} a^{j} b^{k+1-j} + \sum_{j=0}^{k} {\binom{k}{j}} a^{j} b^{k+1-j} + b^{k+1}$$

replacing ℓ with j
$$= a^{k+1} + \sum_{j=1}^{k} {\binom{k}{j-1}} + {\binom{k}{j}} a^{j} b^{k+1-j} + b^{k+1}$$

$$= a^{k+1} + \sum_{j=1}^{k} {\binom{k+1}{j}} a^{j} b^{k+1-j}$$
 by Theorem 1-11
$$= \sum_{j=0}^{k+1} {\binom{k+1}{j}} a^{j} b^{k+1-j}.$$

Theorem 1-12 (continued 3)

Theorem 1-12. The Binomial Theorem. Let *a* and *b* be real numbers and let $m \in \mathbb{N}$. Then

$$(a+b)^m = \sum_{j=0}^m \binom{m}{j} a^j b^{m-j}.$$

Proof (continued). The last equality holds because $a^{k+1} = \binom{k+1}{k+1}a^{k+1}b^0$ and $b^{k+1} = \binom{k+1}{0}a^0b^{k+1}$. So the claim holds for m = k+1 and the induction step has been established. Therefore, by the Principle of Mathematical Induction, the claim holds for all $m \in \mathbb{N}$.

Theorem 1-13(h)

Theorem 1-13. For all $a, b \in \mathbb{R}$ (g) |a| < |b| if and only if -b < a < b. (h) $|a+b| \le |a|+|b|$ (this is the *Triangle Inequality*). (i) $||a|-|b|| \le |a-b|$.

Proof. (h) By part (c), $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. So

 $-|a| - |b| \le a + b \le |a| + |b|$ by Exercise 1.2.4(a)

or

$$-(|a|+|b|) \le a+b \le |a|+|b|,$$

SO

 $|a + b| \le |a| + |b|$ by part (g),

as claimed.

Theorem 1-13(h)

Theorem 1-13. For all
$$a, b \in \mathbb{R}$$

(g) $|a| < |b|$ if and only if $-b < a < b$.
(h) $|a + b| \le |a| + |b|$ (this is the *Triangle Inequality*).
(i) $||a| - |b|| \le |a - b|$.

Proof. (h) By part (c), $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. So

$$-|a|-|b|\leq a+b\leq |a|+|b|$$
 by Exercise 1.2.4(a)

or

$$-(|a|+|b|) \le a+b \le |a|+|b|,$$

SO

$$|a+b| \leq |a|+|b|$$
 by part (g),

as claimed.