Analysis 1 J

Chapter 1. The Real Number System
1-3. The Completeness Axiom—Proofs of Theorems

Second Edition

An Introduction
to Analysis

dJames R. Kirkwood

Analysis 1 December 4, 2023 1/18

Theorem 1-15.  classification of lub and glb

Theorem 1-15

Theorem 1-15.
(a) ais a lub of A C R if and only if
(i) « is an upper bound of A, and
(ii) For all € > 0 there exists a number x(¢) € A
such that x(g) > a —«.
(b) Bis aglbof AC R if and only if
(i) B is a lower bound of A, and
(ii) For all € > 0 there exists a number x(¢) € A
such that x(g) < B +e.
Proof. We give a proof of part (a) and leave the proof of part (b) to
Exercise 1.3.3.
First, suppose o = lub(A). Then, by the definition of lub, « is an upper
bound of A and so (i) holds. For (ii), let £ > 0 be arbitrary and given.
Then o — € < & and so & — € cannot be an upper bound for A since « is
the least upper bound for A. Since o — ¢ is not an upper bound of set A
then there is some element x(g) € A with x(¢) > o — ¢, as claimed.
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Theorem 1-14

Theorem 1-14. If the lub and glb of a set of real numbers exists, then
they are unique.

Proof. We show that the least upper bound is unique and leave the
uniqueness of the greatest lower bound to Exercise 1.3.5.

Let A be a set of real numbers that is bounded above. Suppose a and @
are both least upper bounds of A. Then, by definition of least upper
bound, « and @ are upper bounds of A and (since « is a least upper
bound) then a < @ and (since @ is a least upper bound) then @ < a.
That is, « = @ and so the least upper bound is unique. O
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Theorem 1-15.  classification of lub and glb

Theorem 1-15 (continued)

Theorem 1-15.
(a) ais a lub of AC R if and only if
(i) « is an upper bound of A, and
(ii) For all € > 0 there exists a number x(¢) € A
such that x(¢) > a —e.
(b) Bis aglbof AC R if and only if
(i) B is a lower bound of A, and
(ii) For all € > 0 there exists a number x(¢) € A
such that x(g) < B +e.

Proof (continued). Second, suppose (i) and (ii) hold. Then by (i), « is
an upper bound of A. ASSUME @ < « is also an upper bound of A. Let
e=a—a>0. Then@ = a—e. By (ii), there is an element x(¢) € A with
x(g) > @ —e = @. But this CONTRADICTS the hypothesis that @ is an
upper bound of A. So the assumption that there is an upper bound of A
less than « is false and so « is the least upper bound of A, as claimed. [J
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Theorem 1-16

Theorem 1-16. Let o = lub(A) and suppose o ¢ A. Then for all € > 0,
the interval (o — €, @) contains an infinite number of points of A.

Proof. We give a proof by contradiction. Let € > 0 and let o = lub(A)
where oo ¢ A. By Theorem 1-15(a), there is a number x(¢) € A with

x(e) > a — €. Since a € A and « is an upper bound of A then

x(e) € (a« — g, ). ASSUME interval (o — £, ) contains only finitely many
points of A, say x; < x» < ... < x,. But then x, is an upper bound of A
and x, < o, CONTRADICTING the fact that « is the lub(A). So the
assumption that interval (o — &, &) contains only finitely many points in A
is false and hence (o — ¢, ) must contain infinitely many points of A, as
claimed. O
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Theorem 1-18. The Archimedean Principle

Theorem 1-18. The Archimedean Principle.
If a,b € R and a > 0, then there is a natural number n € N such that
na > b.

Proof. Let A= {ka| n € N}. ASSUME A is bounded above. Then by the
Axiom of Completeness, A has a least upper bound, say o = lub(A). Since
a > 0 there is an element of A, say Na, such that a — a < Na. But then
a < Na+ a = (N + 1)a (this is where we need « to be a least upper
bound and not simply an upper bound) and (N + 1)a € A. This is a
CONTRADICTION to the fact that « is an upper bound of A. So the
assumption that A is bounded above is false and hence A has no upper
bound. In particular, b is not an upper bound of A and so some element of
A, say na, is greater than b, as claimed. O
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Theorem 1-17(b)(i)

Theorem 1-17(b)(i)

Theorem 1-17. Let A be a bounded set of real numbers, and suppose ¢
is a real number. Then

(a) If ¢ > 0: (i) lub(cA) = club(A). (i) glb(cA) = cglb(A).
(b) If ¢ < 0: (i) lub(cA) = cglb(A). (ii) glb(cA) = club(A).

Proof. Let o = lub(A) and ¢ < 0. Then for x € A we have x < .. So

cx > ca. Therefore ca < cx for any x € A and so ca is a lower bound for
cA. To show ca is glb(A), let € > 0. Then ¢/(—c) > 0 and since

a = lub(A) then by Theorem 1-15(a), there is element x(¢) € A such that
x(e) > a—¢/(—c). Then, since ¢ <0, cx(¢) < ca — ce/(—c) = ca +e.

Since cx(e) € cA then by Theorem 1-15(b), car = glb(A), as claimed. [
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Example 1.11

Example 1.11

Example 1.11. Consider the set

a=fl 234 A _J n
2734’57 | n+1

Prove the least upper bound of A is 1.

nEN}.

Proof. Since n < n+1, then 1< 1 by Theorem 1-7(c) (with a = n,

b=n+1and c=1/(n+1) g—g) So 1 is an upper bound of A. Let
€ > 0. With a=¢ and b =1, we have by the Archimedean Principle
(Theorem 1-18), that there is a positive integer N such that Ne > 1.
Then ¢ > 1/N by Theorem 1-7(c) (with a=1, b = Ne, and
c=1/N>0). Now we have

n

1 N-1
l-e<l—o>=— "=
e < N N

Since % € A, then by Theorem 1-15(a) 1 is the lub of A, as claimed. [
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Exercise 1.3.4(a)

Exercise 1.3.4. (a) Between any two real numbers, there is a rational
number. (b) Between any two real numbers, there is an irrational number.

Proof. We give a proof of (a) and leave part (b) as homework.

Let a,b € R, a< b. Then b— a > 0. By Corollary 1-18, we can find
N € N such that 1/N < b — a. By the Archimedean Principle, there exists
k € N such that k(1/N) > a. Let K denote the smallest such k. Then

K(1/N) > a > (K — 1)(1/N)
and
b=b—a+a>1/N+a>1/N+(K—-1)(1/N)=K(1/N).

So, K(1/N) € (a, b) and of course K/N € Q. Therefore, between any two
real numbers there is a rational number, as claimed. ]
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Theorem 1-20. Interval (0, 1) is an uncountable set

Theorem 1-20

Theorem 1-20. The real numbers in (0, 1) form an uncountable set.

Proof. Any real number in (0,1) can be uniquely represented in binary
form as an infinite decimal (we use the usual binary representation if it is
infinite and if a number is represented with a finite binary expansion, then
we simply change the "last” 1 to a 0 and append an infinite number of 1's
after this 0). ASSUME that these numbers are countable. Then let the set
be {x1, o, ...} and suppose the binary representations are:

x1 = 0. a11 awp a3
x» = 0. ax ax» ax

x3 = 0. a31 a3 as3

where the a's give the binary representations of the x's.
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countable

Theorem 1-19

Theorem 1-19. The union of a countable collection of countable sets is
countable.

Proof. Since we have a countable collection of sets, denote the sets as Eq,
E>, .... Since each set is countable, we can denote the elements of E; as
X1, Xi2, - ... Then

UjienEi = Ujen (Ujen{xj}) -

So let f : UE; — N as f(x;) = 2'3/. Then f is one-to-one and so UjcyE;j is
countable. O
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Theorem 1-20. Interval (0, 1) is an uncountable set

Theorem 1-20 (continued)

Theorem 1-20. The real numbers in (0, 1) form an uncountable set.

Proof (continued). Construct number b = 0. by by bs ... where

bi:{ Olfa,',':l

1if ajj = 0.
The b # x; for all i. Therefore, the list x1, X2, xo, . .. does not include b,
CONTRADICTING the assumption that the set of numbers in (0,1) is
countable. So (0,1) is countable, as claimed. O
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Theorem 1-21. Cantor's Theorem

Theorem 1-21. Cantor’s Theorem.
The cardinal number of P(X) is strictly larger than the number of X.

Proof. First, notice that there is a one-to-one map 7 : X — P(X), namely
the function f mapping x — {x}. To show | X| < |P(X)|, we must show
that there is no onto function f : X — P(X).

ASSUME f : X — P(X) is an onto function. Notice that f(x) € P(X) so
f(x) is itself a subset of X. So for some x € X we have x € f(x) and for
others we have x ¢ f(x). Define set A= Uyex{x | x € f(x)}. Since f is
onto (by assumption) then for some a € X we have f(a) = A. Now either
acAoragA If ac Athen a ¢ f(a) = A by the definition of set A, a
CONTRADICTION. If a ¢ A = f(a) then by the definition of set A we
must have a € A, another CONTRADICTION. Since one of these (a € A
or a ¢ A) must be the case, the assumption that there is an onto function
from X to P(X) is false. So, by the definition, | X| < |P(X)|. O

Analysis 1 December 4, 2023 14 / 18

Exercise 1.3.9 (continued 1)

Proof (continued). Theorem 1-8 states: “Let y € Rt and let n € N.
Then there is a unique z € R such that z" = y."

Consider {x | x” < y} C R. This set is nonempty and bounded by Exercise
1.3.9(a), so it has a least upper bound by Axiom 9. Denote lub(A) as z.
We need only show z" = y. ASSUME x"” # y and z" < y. Let
y—2z"=¢>0, and so x* + & = y. Choose d; such that

~1
5}’_i<€{n<7>zi} fori=0,1,2,...,n—1. So

n n—1
(Z + 5)n _ Z <’;>2i5n—i ="+ Z (’;>2i5n—i

i=0 i=0
<Z"+§ Mzidn(")z2 _1£:z”+n_1£:z"+€:y
i=0 i i—o "

Soz+d€{z]|z" <y} where 6 >0 and therefore z is not an upper
bound of {x | x" < y}, a CONTRADICTION.
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Exercise 1.3.9

Exercise 1.3.9. Let y >0, ne€ N, and A= {x | x" < y}.
(a) A'is nonempty and bounded above.

(b) If a€ R, a>0, and n € N, then there exists x € R, x > 0,
such that x" < a. Use this to prove Theorem 1-8.

Proof. (a) Certainly 0 € A. If y <1, then 1 is an upper bound of A by
Exercise 1.2.7(c). If y > 1 then y is an upper bound of A:

x" < y implies x" < y" implies x < y by Exercise 1.2.8(b).

In either case, A is bounded above, as claimed. O

(b) If a <1 then there exists x such that 0 < x < a (either by the
Archimedean Principle or by Corollary 1-18 with b =1). Then x" < a<'1
(by Exercise 1.2.8), and the claim follows. If a > 1 then let x = 1. Then
x™ =1 < a and, again, the claim follows.
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Exercise 1.3.9 (continued 2)

Proof (continued). So the assumption that z" < y is false and we must
have z" > y.

Now ASSUME x" > y. A CONTRADICTION will similarly follow by
letting z" —y =cand y =z" —¢.

Uniqueness follows by assuming a” = y. Then a" is an upper bound of the
above set. If a" is not the least upper bound then a” > y, so we must

have a = lub(A) = z. That is, if 3" = y then a = z and the choice of z is
unique. ]
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Exercise 1.3.10. Countability of relative complements

Exercise 1.3.10

Exercise 1.3.10. Let A be uncountable and B countable. Then A\ B is
uncountable.

Proof. We have A C (A\ B) U B. ASSUME the theorem is false, that
A\ B and B are countable and A is uncountable. But if A\ B and B are
countable, then (A\ B) U B D A is countable by Theorem 1-19, a
CONTRADICTION. So the assumption is false and hence set A\ B is
uncountable, as claimed. O



