Example 2.1.A
Analysis 1 J
Chapter 2. Sequences of Real Numbers Example 2.1.A. Prove {1} — 0.
2-1. Sequences of Real Numbers—Proofs of Theorems ) n=1

Proof. Let ¢ > 0. By Corollary 1-18 (with a = ¢ and b = 1), there is

Seend Bin N(e) € N such that 1/N(g) < e. For any n > N(g) we have
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where the first inequality follows by Exercise 1.2.7(b). Therefore, by the
o0
definition of limit of a sequence < — — 0, as claimed. O
n n=1
James R. Kirkwood
Analysis 1 December 1, 2023 1/18 Analysis 1 December 1, 2023 3/18
Example 2.4 Example 2.6

Example 2.4. Prove that {x,} = {2 — 1/n?} has a limit of 2.
Example 2.6. Prove that {x,} = {n?} diverges to cc.
Proof. Let £ > 0. Define N(¢) =1/y/e. Then for n > N(¢) =1//c > 0,

we have 1/n < /g by Exercise 1.2.7(b), and so 1/n? < & by Exercise Proof. Let M > 0. Define N(M) = m+ 1. Then fof all
1.2.7(c) with n = 2. Therefore, for all n > N(g) we have n> N(M) = VM +1 we have by Exercise 1.2.7(c) (with n = 2)
1 1 1 Xo=n>(WVM+1)2=M+2VM+1> M.
|xp — L| = 2—? -2| = 3| = s <e
Therefore by the definition of a sequence diverges to infinity, we have
So, by the definition of the limit of a sequence, we have L = 2 and {xn} — o0, as claimed. O
{xn} — 2, as claimed. O
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Theorem 2-1. The limit of a convergence sequence are unique

Theorem 2-1. A sequence of real numbers can converge to at most one
number.

Proof. We give a proof by contradiction. ASSUME that some sequence
{xn} converges to both L and M, where L # M, say L < M. Let

e = (M — L)/2. Then the intervals

(L—e,L+¢e)=(3L—M)/2,(L+ M)/2) and

(M—e,M+¢e)=((L+ M)/2,(3M — L)/2) are disjoint. But since

{xn} — L then there is positive N;(¢) € R such that for all n > Ny(g) we
have |x, — L| < e (that is, x, € (L — &, L + ¢)), and since {x,} — M then
there is positive Npyj(¢) € R such that for all n > Ny (g) we have

|xp — M| < e (that is, x, € (M — e, M + ¢)). But then for

n > max{N.(g), Nm(¢)} we must have x, in both (L — ¢, L +¢) and

(M —¢e,M+¢€), a CONTRADICTION since these intervals are disjoint.
This contradiction shows that the assumption that some sequence
converges to two different numbers is false. That is, a sequence of real
numbers can converge to at most one number, as claimed. O

Ol CoNvergence
sequentes

Theorem 2-2

Theorem 2-2. The sequence of real numbers {a,} converges to L if and
only if for all € > 0, all but a finite number of terms of {a,} lie in
(L—e,L+¢).

Proof. First, suppose lim,_...{a,} = L and let £ > 0 be given. Then, by
the definition of limit of a sequence, there exists positive N(¢) € R such
that for all n > N(e) we have |a, — L| < e. That is, for all n > N(eg) we
have a, € (L—¢,L+¢). Then all a, liein (L — ¢, L + ¢), except possibly
for a1, a2,...,a|n()|- Hence, all but finitely many terms of {a,} lie in
(L—e,L+¢), as claimed.

Now suppose all but a finite number of terms of {a,} liein (L —¢,L+¢)
where € > 0 is given. Let N(g) be the largest subscript of such terms.
Then for all n > N(g) we have a, € (L —&,L+¢€). That is, for all

n > N(e) we have |a, — L| < €. So by the definition of limit of a sequence,
{apn} — L, as claimed. O
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Theorem 2-3. Convergence sequences are bounded Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-3

Theorem 2-3. If {a,} is a convergent sequence of real numbers, then the
sequence {a,} is bounded.

Proof. Suppose {a,} — L. Then for € = 1, there exists positive

N(g) = N(1) =€ R such that for all n > N(g) we have |a, — L| <e=1
by the definition of limit of a sequence. Therefore

max{ai, a2, ...,a n()|, L + 1} is an upper bound for {a,} and

min{a, az,...,a n()|, L — 1} is a lower bound for {a,}. That is,
sequence {a,} is bounded, as claimed. O
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Theorem 2-4

Theorem 2-4. Suppose {a,} and {b,} are sequences with {a,} — a and
{bn} — b. Then

(a) {an+ bn} —a+b.

(b) {capn} — cafor any c € R.

(c) {anbn} — ab.

(d) If b#0 and b, # 0 for all n € N, then {a,/b,} — a/b.

Proof. (a) This is our first “c halves” proof. Let € > 0 (notice then that
€/2 > 0 as well). Since {a,} — a by hypothesis, then there is positive
N,(¢/2) € R such that for all n > N,(¢/2) we have |a, — a| < €/2. Since
{bn} — b by hypothesis, then there is positive Np(c/2) € R such that for
all n > Np(g/2) we have |b, — b| < /2. Define

N(g) = max{N,(g/2), Np(c/2)}. Then for all n > N(g) we have both

n > N,(¢/2) and n > Np(¢/2), and so. ..
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Theorem 2-4 (continued 1)

Theorem 2-4. Suppose {a,} and {b,} are sequences with {a,} — a and
{bn} — b. Then

(a) {an+ b} — a+b.

(b) {capn} — ca for any c € R.

(c) {anbn} — ab.

(d) If b#0 and b, # 0 for all n € N, then {a,/b,} — a/b.

Proof (continued).

|(an + bn) = (a+ b)| = [(an — a) + (by — b)|
< |ap — a| + |b, — b| by the Triangle Inequality
< gf24+¢e/2=¢.

Therefore, by the definition of the limit of a sequence, we have
{an+ bp} — a+ b, as claimed.
Analysis 1

December 1, 2023 10 / 18

Theorem 2-4 (continued 3)

Theorem 2-4. Suppose {a,} and {b,} are sequences with {a,} — a and
{bn} — b. Then

(c) {anbn} — ab.

(d) If b#0 and b, # 0 for all n € N, then {a,/b,} — a/b.
Proof (continued). (c) Let N = max{N,(¢), Ny(¢)}. Then for all n > N
we have that both n > N,(¢) and n > Np(e) so that

lanb, — ab| = l|apb, — anb + apb — ab|
< |apb, — anb| + |anb — ab| by the Triangle Inequality
= |an||bn — b| + |b||an — a|] by Theorem 1-13(d)
< M]|b,| + |b||an — a since {a,} is bounded by M
< M (ﬁ) + |b|2|b|€—|— 1 since n > N,(¢) and n > Np(¢)
< = + t= €.
2 2

Therefore {a,b,} — ab by the definition of limit of a sequence, as claimed.
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Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4 (continued 2)

Theorem 2-4. Suppose {a,} and {b,} are sequences with {a,} — a and
{b,} — b. Then

(c) {anbn} — ab.
(d) If b#0 and b, # 0 for all n € N, then {a,/b,} — a/b.

Proof (continued). (c) Let € > 0. Since {a,} is convergent by
hypothesis, the {a,} is bounded by Theorem 2-3, say |a,| < M for all

n € N. Since {a,} — a then, by the definition of the limit of a sequence,
there is a positive N,(g) € R such that if n > N,(¢) then we have

lan — a| < (We'll discuss this choice for the bound in the notes.

26 +1°
Also, we denote the parameter N for which we consider n > N simply as
N,(e) instead of something more complicated as we did in part (a).) Since

{bn} — b by hypothesis, there is a positive Ny(¢) € R such that if

n > Np(e) then we have |b, — b| < ﬁ (Again, we explain this choice in
the notes.)
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Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4 (continued 4)

Theorem 2-4. Suppose {a,} and {b,} are sequences with {a,} — a and
{bn} — b. Then

(d) If b#0 and b, # 0 for all n € N, then {a,/b,} — a/b.
Proof (continued). (d) Let ¢ > 0. By Exercise 2.1.10, there is M > 0
such that 1/|b,| < M for all n € N. Since {a,} — a by hypothesis, there
is positive N,(¢) € R such that if n > N,(¢) then |a, — a] < ﬁ Since
{bn} — b by hypothesis, there is positive Ny(¢) € R such that if

n > Np(e) then |b, — b| < %. Let N = max{N,(e), Np(¢)}.

an a apb —ab,| |anb— ab+ ab— ab,
b, b bnb N bnb
anb— ab ab — ab, . .
< bb bb by the Triangle Inequality
|bllan —a| | |al[bn — b]
= by Th 1-13(d
by b] + Ibyb] y Theorem (d)
() Analysis 1 December 1, 2023 13 / 18



o vy 1

e -4 Arithmetic of convrgence squances
Theorem 2-4 (continued 5)

Theorem 2-4. Suppose {a,} and {b,} are sequences with {a,} — a and
{b,} — b. Then

(d) If b#0 and b, # 0 for all n € N, then {a,/b,} — a/b.
Proof (continued).

an 2 |bllan —al | |allbn — b]
-] < by Th 1-13(d
by Bl = |byb] b,p] Y Theorem 1-13(d)
1 al
= —lap—al+ ——|b,— b]
| bl |bnb
|a|M . .
< Mla, —a| + b |b, — b| since {1/b,} is bounded by M
€ |a|M e|b| .
M(5) Ny(€), n > N
< W + Ib] <2M]a]+1 since n > N,(g), n > Np(e)
cfif.
2 2 7
Therefore {a,/b,} — a/b by the definition of limit of a sequence. O
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Example 2.9

Example 2.9

Example 2.9. Prove that the sequence {x,} = {(1+ 1/n)"} is monotone
increasing.

Proof. We apply the Binomial Theorem (Theorem 1-12). We have

o RO
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Theorem 2-6. Bounded monotone sequence converges

Theorem 2-6

Theorem 2-6. A bounded monotone sequence converges.

Proof. We give a proof for monotone increasing sequences, and leave the
proof of monotone decreasing sequence for an exercise. Let {a,} be a

monotone increasing, bounded sequence. Since the sequence forms a

bounded set of real numbers, the it has a least upper bound (by the Axiom
of Completeness), say L. Then a, < L for all n € N and by Theorem 1-15,
for all & > 0 there exists positive N(¢) € N such that ay() > L —¢. Since
{an} is a monotone increasing sequence (bounded above by L), then for all
n > N(c) we have L > a, > ay(.) > L — ¢ and there |a, — L| < e. That s,
by the definition of the limit of a sequence, {a,} — L, as claimed. O
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Example 2.9

Example 2.9 (continued)

Example 2.9. Prove that the sequence {x,} = {(1+ 1/n)"} is monotone
increasing.

Proof (continued). Similarly,

=S R0 (-2 (55D

k=0

Now 1 — ﬁ >1-— I for any j > 0. In the two sums, the kth term for
n n

Np+1 is greater than the kth term for x,. In addition, x,41 has one
additional term (for k = n+ 1) so that xp+1 > X,. So, by definition, {x,}
is a monotone increasing sequence. O
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Theorem 2-8

Theorem 2-8. Let A be a nonempty set of real numbers bounded above.
Then there is a sequence {x,} such that (/) x, € A for all n € N, and (ii)
{xn} — lub(A).

Proof. Since A is bounded above, the it has a least upper bound, say «
(by the Axiom of Completeness). If a € A, let x, = « for all n € N. If

a & A, then for all n € N there exists x, € A such that « — 1/n < x, < «
by Theorem 1-16 (with € = 1/n). Let € > 0 be given. By the
Archimedean Principle (Theorem 1-18) there is positive N(¢) € R such
that 1/N(e) < e. Then for all n > N(g) we have an x, € A where

a—e<a—-1/NEe)<a—-1/n<x, < a.

That is, for all n > N(e) we have |x, — «| < e. Then each x, € A and
{xn} — a = lub(A), by the definition of limit of a sequence. O



