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Example 2.1.A

Example 2.1.A

Example 2.1.A. Prove

{
1

n

}∞
n=1

→ 0.

Proof. Let ε > 0. By Corollary 1-18 (with a = ε and b = 1), there is
N(ε) ∈ N such that 1/N(ε) < ε. For any n > N(ε) we have

|xn − L| =
∣∣∣∣1n − 0

∣∣∣∣ =

∣∣∣∣1n
∣∣∣∣ =

1

n
<

1

N(ε)
< ε,

where the first inequality follows by Exercise 1.2.7(b). Therefore, by the

definition of limit of a sequence

{
1

n

}∞
n=1

→ 0, as claimed.
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Example 2.4

Example 2.4

Example 2.4. Prove that {xn} = {2− 1/n2} has a limit of 2.

Proof. Let ε > 0. Define N(ε) = 1/
√

ε. Then for n > N(ε) = 1/
√

ε > 0,
we have 1/n <

√
ε by Exercise 1.2.7(b), and so 1/n2 < ε by Exercise

1.2.7(c) with n = 2. Therefore, for all n > N(ε) we have

|xn − L| =
∣∣∣∣(2− 1

n2

)
− 2

∣∣∣∣ =

∣∣∣∣− 1

n2

∣∣∣∣ =
1

n2
< ε.

So, by the definition of the limit of a sequence, we have L = 2 and
{xn} → 2, as claimed.
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Example 2.6

Example 2.6

Example 2.6. Prove that {xn} = {n2} diverges to ∞.

Proof. Let M > 0. Define N(M) =
√

M + 1. Then for all
n > N(M) =

√
M + 1 we have by Exercise 1.2.7(c) (with n = 2)

xn = n2 > (
√

M + 1)2 = M + 2
√

M + 1 > M.

Therefore by the definition of a sequence diverges to infinity, we have
{xn} → ∞, as claimed.
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Theorem 2-1. The limit of a convergence sequence are unique

Theorem 2-1

Theorem 2-1. A sequence of real numbers can converge to at most one
number.
Proof. We give a proof by contradiction. ASSUME that some sequence
{xn} converges to both L and M, where L 6= M, say L < M. Let
ε = (M − L)/2. Then the intervals
(L− ε, L + ε) = ((3L−M)/2, (L + M)/2) and
(M − ε, M + ε) = ((L + M)/2, (3M − L)/2) are disjoint. But since
{xn} → L then there is positive NL(ε) ∈ R such that for all n > NL(ε) we
have |xn − L| ≤ ε (that is, xn ∈ (L− ε, L + ε)), and since {xn} → M then
there is positive NM(ε) ∈ R such that for all n > NM(ε) we have
|xn −M| ≤ ε (that is, xn ∈ (M − ε, M + ε)).

But then for
n > max{NL(ε),NM(ε)} we must have xn in both (L− ε, L + ε) and
(M − ε, M + ε), a CONTRADICTION since these intervals are disjoint.
This contradiction shows that the assumption that some sequence
converges to two different numbers is false. That is, a sequence of real
numbers can converge to at most one number, as claimed.
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Theorem 2-2. Alternative ε classification of convergence
sequences

Theorem 2-2

Theorem 2-2. The sequence of real numbers {an} converges to L if and
only if for all ε > 0, all but a finite number of terms of {an} lie in
(L− ε, L + ε).

Proof. First, suppose limn→∞{an} = L and let ε > 0 be given. Then, by
the definition of limit of a sequence, there exists positive N(ε) ∈ R such
that for all n > N(ε) we have |an − L| < ε. That is, for all n > N(ε) we
have an ∈ (L− ε, L + ε). Then all an lie in (L− ε, L + ε), except possibly
for a1, a2, . . . , abN(ε)c. Hence, all but finitely many terms of {an} lie in
(L− ε, L + ε), as claimed.

Now suppose all but a finite number of terms of {an} lie in (L− ε, L + ε)
where ε > 0 is given. Let N(ε) be the largest subscript of such terms.
Then for all n > N(ε) we have an ∈ (L− ε, L + ε). That is, for all
n > N(ε) we have |an − L| < ε. So by the definition of limit of a sequence,
{an} → L, as claimed.

() Analysis 1 December 1, 2023 7 / 18



Theorem 2-2. Alternative ε classification of convergence
sequences

Theorem 2-2

Theorem 2-2. The sequence of real numbers {an} converges to L if and
only if for all ε > 0, all but a finite number of terms of {an} lie in
(L− ε, L + ε).

Proof. First, suppose limn→∞{an} = L and let ε > 0 be given. Then, by
the definition of limit of a sequence, there exists positive N(ε) ∈ R such
that for all n > N(ε) we have |an − L| < ε. That is, for all n > N(ε) we
have an ∈ (L− ε, L + ε). Then all an lie in (L− ε, L + ε), except possibly
for a1, a2, . . . , abN(ε)c. Hence, all but finitely many terms of {an} lie in
(L− ε, L + ε), as claimed.

Now suppose all but a finite number of terms of {an} lie in (L− ε, L + ε)
where ε > 0 is given. Let N(ε) be the largest subscript of such terms.
Then for all n > N(ε) we have an ∈ (L− ε, L + ε). That is, for all
n > N(ε) we have |an − L| < ε. So by the definition of limit of a sequence,
{an} → L, as claimed.

() Analysis 1 December 1, 2023 7 / 18



Theorem 2-2. Alternative ε classification of convergence
sequences

Theorem 2-2

Theorem 2-2. The sequence of real numbers {an} converges to L if and
only if for all ε > 0, all but a finite number of terms of {an} lie in
(L− ε, L + ε).

Proof. First, suppose limn→∞{an} = L and let ε > 0 be given. Then, by
the definition of limit of a sequence, there exists positive N(ε) ∈ R such
that for all n > N(ε) we have |an − L| < ε. That is, for all n > N(ε) we
have an ∈ (L− ε, L + ε). Then all an lie in (L− ε, L + ε), except possibly
for a1, a2, . . . , abN(ε)c. Hence, all but finitely many terms of {an} lie in
(L− ε, L + ε), as claimed.

Now suppose all but a finite number of terms of {an} lie in (L− ε, L + ε)
where ε > 0 is given. Let N(ε) be the largest subscript of such terms.
Then for all n > N(ε) we have an ∈ (L− ε, L + ε). That is, for all
n > N(ε) we have |an − L| < ε. So by the definition of limit of a sequence,
{an} → L, as claimed.

() Analysis 1 December 1, 2023 7 / 18



Theorem 2-3. Convergence sequences are bounded

Theorem 2-3

Theorem 2-3. If {an} is a convergent sequence of real numbers, then the
sequence {an} is bounded.

Proof. Suppose {an} → L. Then for ε = 1, there exists positive
N(ε) = N(1) =∈ R such that for all n > N(ε) we have |an − L| < ε = 1
by the definition of limit of a sequence. Therefore
max{a1, a2, . . . , abN(1)c, L + 1} is an upper bound for {an} and
min{a1, a2, . . . , abN(1)c, L− 1} is a lower bound for {an}. That is,
sequence {an} is bounded, as claimed.
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Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4

Theorem 2-4. Suppose {an} and {bn} are sequences with {an} → a and
{bn} → b. Then

(a) {an + bn} → a + b.

(b) {can} → ca for any c ∈ R.

(c) {anbn} → ab.

(d) If b 6= 0 and bn 6= 0 for all n ∈ N, then {an/bn} → a/b.

Proof. (a) This is our first “ε halves” proof. Let ε > 0 (notice then that
ε/2 > 0 as well). Since {an} → a by hypothesis, then there is positive
Na(ε/2) ∈ R such that for all n > Na(ε/2) we have |an − a| < ε/2. Since
{bn} → b by hypothesis, then there is positive Nb(ε/2) ∈ R such that for
all n > Nb(ε/2) we have |bn − b| < ε/2.

Define
N(ε) = max{Na(ε/2),Nb(ε/2)}. Then for all n > N(ε) we have both
n > Na(ε/2) and n > Nb(ε/2), and so. . .

() Analysis 1 December 1, 2023 9 / 18



Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4

Theorem 2-4. Suppose {an} and {bn} are sequences with {an} → a and
{bn} → b. Then

(a) {an + bn} → a + b.

(b) {can} → ca for any c ∈ R.

(c) {anbn} → ab.

(d) If b 6= 0 and bn 6= 0 for all n ∈ N, then {an/bn} → a/b.

Proof. (a) This is our first “ε halves” proof. Let ε > 0 (notice then that
ε/2 > 0 as well). Since {an} → a by hypothesis, then there is positive
Na(ε/2) ∈ R such that for all n > Na(ε/2) we have |an − a| < ε/2. Since
{bn} → b by hypothesis, then there is positive Nb(ε/2) ∈ R such that for
all n > Nb(ε/2) we have |bn − b| < ε/2. Define
N(ε) = max{Na(ε/2),Nb(ε/2)}. Then for all n > N(ε) we have both
n > Na(ε/2) and n > Nb(ε/2), and so. . .

() Analysis 1 December 1, 2023 9 / 18



Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4

Theorem 2-4. Suppose {an} and {bn} are sequences with {an} → a and
{bn} → b. Then

(a) {an + bn} → a + b.

(b) {can} → ca for any c ∈ R.

(c) {anbn} → ab.

(d) If b 6= 0 and bn 6= 0 for all n ∈ N, then {an/bn} → a/b.

Proof. (a) This is our first “ε halves” proof. Let ε > 0 (notice then that
ε/2 > 0 as well). Since {an} → a by hypothesis, then there is positive
Na(ε/2) ∈ R such that for all n > Na(ε/2) we have |an − a| < ε/2. Since
{bn} → b by hypothesis, then there is positive Nb(ε/2) ∈ R such that for
all n > Nb(ε/2) we have |bn − b| < ε/2. Define
N(ε) = max{Na(ε/2),Nb(ε/2)}. Then for all n > N(ε) we have both
n > Na(ε/2) and n > Nb(ε/2), and so. . .

() Analysis 1 December 1, 2023 9 / 18



Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4 (continued 1)

Theorem 2-4. Suppose {an} and {bn} are sequences with {an} → a and
{bn} → b. Then

(a) {an + bn} → a + b.

(b) {can} → ca for any c ∈ R.

(c) {anbn} → ab.

(d) If b 6= 0 and bn 6= 0 for all n ∈ N, then {an/bn} → a/b.

Proof (continued).

|(an + bn)− (a + b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b| by the Triangle Inequality

< ε/2 + ε/2 = ε.

Therefore, by the definition of the limit of a sequence, we have
{an + bn} → a + b, as claimed.
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Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4 (continued 2)

Theorem 2-4. Suppose {an} and {bn} are sequences with {an} → a and
{bn} → b. Then

(c) {anbn} → ab.

(d) If b 6= 0 and bn 6= 0 for all n ∈ N, then {an/bn} → a/b.

Proof (continued). (c) Let ε > 0. Since {an} is convergent by
hypothesis, the {an} is bounded by Theorem 2-3, say |an| < M for all
n ∈ N. Since {an} → a then, by the definition of the limit of a sequence,
there is a positive Na(ε) ∈ R such that if n > Na(ε) then we have

|an − a| < ε

2|b|+ 1
. (We’ll discuss this choice for the bound in the notes.

Also, we denote the parameter N for which we consider n > N simply as
Na(ε) instead of something more complicated as we did in part (a).) Since
{bn} → b by hypothesis, there is a positive Nb(ε) ∈ R such that if

n > Nb(ε) then we have |bn − b| < ε

2M
. (Again, we explain this choice in

the notes.)
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Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4 (continued 3)

Theorem 2-4. Suppose {an} and {bn} are sequences with {an} → a and
{bn} → b. Then

(c) {anbn} → ab.
(d) If b 6= 0 and bn 6= 0 for all n ∈ N, then {an/bn} → a/b.

Proof (continued). (c) Let N = max{Na(ε),Nb(ε)}. Then for all n > N
we have that both n > Na(ε) and n > Nb(ε) so that

|anbn − ab| = |anbn − anb + anb − ab|
≤ |anbn − anb|+ |anb − ab| by the Triangle Inequality

= |an||bn − b|+ |b||an − a| by Theorem 1-13(d)

< M|bn|+ |b||an − a| since {an} is bounded by M

< M
( ε

2M

)
+ |b| ε

2|b|+ 1
since n > Na(ε) and n > Nb(ε)

<
ε

2
+

ε

2
= ε.

Therefore {anbn} → ab by the definition of limit of a sequence, as claimed.
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Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4 (continued 4)

Theorem 2-4. Suppose {an} and {bn} are sequences with {an} → a and
{bn} → b. Then

(d) If b 6= 0 and bn 6= 0 for all n ∈ N, then {an/bn} → a/b.

Proof (continued). (d) Let ε > 0. By Exercise 2.1.10, there is M > 0
such that 1/|bn| < M for all n ∈ N. Since {an} → a by hypothesis, there

is positive Na(ε) ∈ R such that if n > Na(ε) then |an − a| < ε

2M
. Since

{bn} → b by hypothesis, there is positive Nb(ε) ∈ R such that if

n > Nb(ε) then |bn − b| < ε|a|
2M|a|+ 1

. Let N = max{Na(ε),Nb(ε)}.∣∣∣∣an

bn
− a

b

∣∣∣∣ =

∣∣∣∣anb − abn

bnb

∣∣∣∣ =

∣∣∣∣anb − ab + ab − abn

bnb

∣∣∣∣
≤

∣∣∣∣anb − ab

bnb

∣∣∣∣ +

∣∣∣∣ab − abn

bnb

∣∣∣∣ by the Triangle Inequality

=
|b||an − a|
|bnb|

+
|a||bn − b|
|bnb|

by Theorem 1-13(d)
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Theorem 2-4. Arithmetic of convergence sequences

Theorem 2-4 (continued 5)

Theorem 2-4. Suppose {an} and {bn} are sequences with {an} → a and
{bn} → b. Then

(d) If b 6= 0 and bn 6= 0 for all n ∈ N, then {an/bn} → a/b.

Proof (continued).∣∣∣∣an

bn
− a

b

∣∣∣∣ ≤ |b||an − a|
|bnb|

+
|a||bn − b|
|bnb|

by Theorem 1-13(d)

=
1

|bn|
|an − a|+ |a|

|bnb|
|bn − b|

< M|an − a|+ |a|M
|b|

|bn − b| since {1/bn} is bounded by M

< M
( ε

2M

)
+
|a|M
|b|

(
ε|b|

2M|a|+ 1

)
since n > Na(ε), n > Nb(ε)

<
ε

2
+

ε

2
= ε.

Therefore {an/bn} → a/b by the definition of limit of a sequence.
() Analysis 1 December 1, 2023 14 / 18



Theorem 2-6. Bounded monotone sequence converges

Theorem 2-6

Theorem 2-6. A bounded monotone sequence converges.

Proof. We give a proof for monotone increasing sequences, and leave the
proof of monotone decreasing sequence for an exercise. Let {an} be a
monotone increasing, bounded sequence. Since the sequence forms a
bounded set of real numbers, the it has a least upper bound (by the Axiom
of Completeness), say L.

Then an ≤ L for all n ∈ N and by Theorem 1-15,
for all ε > 0 there exists positive N(ε) ∈ N such that aN(ε) > L− ε. Since
{an} is a monotone increasing sequence (bounded above by L), then for all
n > N(ε) we have L ≥ an ≥ aN(ε) > L− ε and there |an − L| < ε. That is,
by the definition of the limit of a sequence, {an} → L, as claimed.
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for all ε > 0 there exists positive N(ε) ∈ N such that aN(ε) > L− ε. Since
{an} is a monotone increasing sequence (bounded above by L), then for all
n > N(ε) we have L ≥ an ≥ aN(ε) > L− ε and there |an − L| < ε. That is,
by the definition of the limit of a sequence, {an} → L, as claimed.
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Example 2.9

Example 2.9

Example 2.9. Prove that the sequence {xn} = {(1 + 1/n)n} is monotone
increasing.

Proof. We apply the Binomial Theorem (Theorem 1-12). We have

xn =

(
1 +

1

n

)n

=
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k=0
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n

k

) (
1

n

)k
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=
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k!

(
1

n

)k

=
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1
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)
· · ·
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1− k − 1

n

)

≤
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Example 2.9

Example 2.9 (continued)

Example 2.9. Prove that the sequence {xn} = {(1 + 1/n)n} is monotone
increasing.

Proof (continued). Similarly,

xn+1 =
n+1∑
k=0

1

k!
(1)

(
1− 1

n + 1

) (
1− 2

n + 1

)
· · ·

(
1− k − 1

n + 1

)
.

Now 1− j

n + 1
> 1− j

n
for any j > 0. In the two sums, the kth term for

nn+1 is greater than the kth term for xn. In addition, xn+1 has one
additional term (for k = n + 1) so that xn+1 > xn. So, by definition, {xn}
is a monotone increasing sequence.
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Theorem 2-8. lub of a set and limits of sequences

Theorem 2-8

Theorem 2-8. Let A be a nonempty set of real numbers bounded above.
Then there is a sequence {xn} such that (i) xn ∈ A for all n ∈ N, and (ii)
{xn} → lub(A).

Proof. Since A is bounded above, the it has a least upper bound, say α
(by the Axiom of Completeness). If α ∈ A, let xn = α for all n ∈ N. If
α 6∈ A, then for all n ∈ N there exists xn ∈ A such that α− 1/n < xn < α
by Theorem 1-16 (with ε = 1/n).

Let ε > 0 be given. By the
Archimedean Principle (Theorem 1-18) there is positive N(ε) ∈ R such
that 1/N(ε) < ε. Then for all n > N(ε) we have an xn ∈ A where

α− ε < α− 1/N(ε) < α− 1/n < xn < α.

That is, for all n > N(ε) we have |xn − α| < ε. Then each xn ∈ A and
{xn} → α = lub(A), by the definition of limit of a sequence.
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