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Theorem 2-11. e classification of subsequential limits

Theorem 2-11

Theorem 2-11. Real number L is a subsequential limit of {a,} if and only
if € > 0, the interval (L — ¢, L 4+ ¢) contains infinitely many terms of {a,}.

Proof. Suppose L is a subsequential limit of {a,}. Then there is a
subsequence {aj, } of {an} that converges to L. Let £ > 0. Then by the
definition of limit of a subsequence, there is positive K(g) € R such that if
k > K(e), then |a,, — L| <e. Thatis, a,, € (L—¢,L+¢) for all

k > K(e). Therefore, (L — e, L 4 €) contains infinitely many terms of
{an}, namely An(kieyr Anpkieranr fkieyar -0 AS claimed.

Conversely, suppose for every £ > 0 that the interval (L — e, L+ ¢)
contains infinitely many terms of {a,}. We inductively construct a
subsequence of {a,} that converges to L. For k = 1 we take £ =1 and,
since there are infinitely many terms of {a,} in (L —1,L + 1), we choose
one and denote it a,,. For k = 2 we take € = 1/2 and, since there are
infinitely many terms of {a,} in (L —1/2, L+ 1/2), we choose one with
subscript greater than n; and denote it ap,.
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Theorem 2-10

Theorem 2-10

Theorem 2-10. A sequence {a,} converges to L if and only if every
subsequence of {a,} converges to L.

Proof. Suppose {a,} converges to L. Let € > 0. Then there exists
positive N(g) € R such that for all n > N(g), we have |a, — L| < e. Let
{an, } be a subsequence of {a,}, and let K(¢) = N(g). Then for all

k > K(g) we have ny > k > K(g) = N(g) (nk > k, as observed in Note
2.2.A) and hence |a,, — L| < € (since ng > N(¢)). Thatis, {a,, }
converges to L. Since {ap, } is an arbitrary subsequence of {a,}, then
every subsequence of {a,} converges to L.

Suppose every subsequence of {a,} converges to L. With ny = k we have
{an} = {ak}22, = {an}2y; thatis, {a,} is a subsequence of itself.
Therefore {a,} converges to L. O
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Theorem 2-11. e classification of subsequential limits

Theorem 2-11 (continued)

Theorem 2-11. Real number L is a subsequential limit of {a,} if and only
if € > 0, the interval (L — ¢, L 4+ €) contains infinitely many terms of {a,}.

Proof (continued). We take these as the Base Cases. Now suppose we
have similarly chosen ap,, an,,...,an, where n; < np <--- < ng and each
an, € (L—1/i,L+1/i) for 1 < i < k (this is the Induction Hypothesis).
For the Induction Step, consider i = k+ 1 and let ¢ = 1/(k + 1). Since
there are infinitely many terms of {a,} in (L—1/(k+1),L+1/(k+ 1)),
we can choose one with subscript greater than ny (this is the Induction
Step). We have produced a subsequence {a,, } of {a,}. We still need to
show that {a,, } converges to L.

Let € > 0. By the Archimedean Principle (Theorem 1-18), there is

K(e) € N such that 1/K(e) < e. If k > K(¢) then 1/k < ¢ and

an, € (L—1/k,L+1/k) C (L —¢€, L+ ¢). Therefore, by the definition of
limit of a subsequence we have {a,, } converges to L. Thatis, L is a
subsequential limit of {a,}, as claimed. O
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Exercise 2.2.8(a)

Exercise 2.2.8(a)

Exercise 2.2.8(a). Construct a sequence with exactly two subsequential
limits. Can this be done is such a way that no two terms of the sequence
are the same?

Solution. Consider the sequence {a,} = {(—1)"}. Since for 1 > ¢ > 0,
the interval (L — ¢, L +¢€) can contain at most one of —1 and 1 (and these
are the only terms of the sequence), then these are the only possible
subsequential limits. The subsequence {az,_1}%%, = {-1,—-1,—-1,...}
converges to —1, and the subsequence {a2,}5°; = {1,1,1,...} converges

to 1. So there are exactly two subsequential limits of {a,}.

This can be done in such a way that no two terms are the same. Let

[ =1—-1/n nodd
f(n)_{ 1+1/n  neven

and define {a,} = {f(n)}. Then no two terms of {a,} are equal.
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Exercise 2.2.12(a)

Exercise 2.2.12(a)

Exercise 2.2.12(a). If {a,} — L and if a, < L for infinitely many values
of n, then there is a subsequence of {a,} that is increasing (i.e.,
nondecreasing) and converges to L.

Proof. Let {a,} — L and suppose a, < L for infinitely many values of n.
If a, = L for infinitely many values of n, then we can simply take a
constant subsequence of all L's to get the desired subsequence. So without
loss of generality (“WLOG"), we can assume that only finitely many

ap = L; say the last one has subscript N (take N = 0 if none of the a,
equal L). Similar to the proof of Theorem 2-11 we inductively construct an
increasing subsequence {ap, } of {a,} that converges to L. For k =1,
since there are infinitely many a, < L, we can choose one with subscript
greater than N and denote it a,,. For k = 2, since there are infinitely
many a, < L and {a,} — L, we can choose an a, with subscript greater
than ny, satisfying |a, — L| < min{1/2,L — a,, }, and denote it a,,. We
take these as the Base Cases.
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Exercise 2.2.8(a)

Exercise 2.2.8(a) (continued)

Exercise 2.2.8(a). Construct a sequence with exactly two subsequential
limits. Can this be done is such a way that no two terms of the sequence
are the same?

Solution (continued). The only intervals of the form (L — ¢, L + €) which
contain infinitely many terms of {a,} for all € > 0 are the ones for which
L=—-1or L=1, so by Theorem 2-11 the only possible subsequential
limits are —1 and 1. Let € > 0. Define N, = N, = 1/e. Then for all

n > N, we have 1/n < € and so the interval (=1 — ¢, —1 4 ¢) contains
infinitely many terms of {a,}, namely those of odd subscripts where the
subscripts are greater than N,. Similarly for all n > N, we have 1/n < ¢
and so the interval (1 —€,1 + €) contains infinitely many terms of {a,},
namely those of even subscripts where the subscripts are greater than Ne.
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Exercise 2.2.12(a)

Exercise 2.2.12(a) (continued)

Proof (continued). Now suppose we have similarly chosen

anys anys -+ -5 an, Where ng < np < --- < nyg and

lan, — L| < min{1/i,L — a,_,} for 2 < i < k (this is the Induction
Hypothesis). For the Induction Step, consider i = k + 1. Since there are
infinitely many a, < L and {a,} — L, we can choose an a, with subscript
greater than ny, satisfying |a, — L| < min{1/(k + 1), L — a,, }, and denote
it an,,, (this is the Induction Step). We have produced an increasing
subsequence {a, } of {a,}. We still need to show that {ap, } converges to
L.

Let € > 0. By the Archimedean Principle (Theorem 1-18), there is

K(e) € N such that 1/K(e) < e. If k > K(¢) then 1/k < ¢ and

an, € (L—1/k,L+1/k) C (L—¢,L+¢). Hence, by the definition of limit
of a subsequence we have {a,, } converges to L. Therefore, we have
constructed increasing subsequence {a,, } of {a,} that converges to L, as
claimed. O
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