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Theorem 2-10

Theorem 2-10

Theorem 2-10. A sequence {an} converges to L if and only if every
subsequence of {an} converges to L.

Proof. Suppose {an} converges to L. Let ε > 0. Then there exists
positive N(ε) ∈ R such that for all n > N(ε), we have |an − L| < ε. Let
{ank

} be a subsequence of {an}, and let K (ε) = N(ε). Then for all
k ≥ K (ε) we have nk ≥ k ≥ K (ε) = N(ε) (nk ≥ k, as observed in Note
2.2.A) and hence |ank

− L| < ε (since nk ≥ N(ε)). That is, {ank
}

converges to L. Since {ank
} is an arbitrary subsequence of {an}, then

every subsequence of {an} converges to L.

Suppose every subsequence of {an} converges to L. With nk = k we have
{ank

} = {ak}∞k=1 = {an}∞n=1; that is, {an} is a subsequence of itself.
Therefore {an} converges to L.
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Theorem 2-11. ε classification of subsequential limits

Theorem 2-11

Theorem 2-11. Real number L is a subsequential limit of {an} if and only
if ε > 0, the interval (L− ε, L + ε) contains infinitely many terms of {an}.

Proof. Suppose L is a subsequential limit of {an}. Then there is a
subsequence {ank

} of {an} that converges to L. Let ε > 0. Then by the
definition of limit of a subsequence, there is positive K (ε) ∈ R such that if
k > K (ε), then |ank

− L| < ε. That is, ank
∈ (L− ε, L + ε) for all

k > K (ε). Therefore, (L− ε, L + ε) contains infinitely many terms of
{an}, namely andK(ε)e , andK(ε)e+1

, andK(ε)e+2
, . . . , as claimed.

Conversely, suppose for every ε > 0 that the interval (L− ε, L + ε)
contains infinitely many terms of {an}. We inductively construct a
subsequence of {an} that converges to L. For k = 1 we take ε = 1 and,
since there are infinitely many terms of {an} in (L− 1, L + 1), we choose
one and denote it an1 . For k = 2 we take ε = 1/2 and, since there are
infinitely many terms of {an} in (L− 1/2, L + 1/2), we choose one with
subscript greater than n1 and denote it an2 .
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Theorem 2-11. ε classification of subsequential limits

Theorem 2-11 (continued)

Theorem 2-11. Real number L is a subsequential limit of {an} if and only
if ε > 0, the interval (L− ε, L + ε) contains infinitely many terms of {an}.

Proof (continued). We take these as the Base Cases. Now suppose we
have similarly chosen an1 , an2 , . . . , ank

where n1 < n2 < · · · < nk and each
ani ∈ (L− 1/i , L + 1/i) for 1 ≤ i ≤ k (this is the Induction Hypothesis).
For the Induction Step, consider i = k + 1 and let ε = 1/(k + 1). Since
there are infinitely many terms of {an} in (L− 1/(k + 1), L + 1/(k + 1)),
we can choose one with subscript greater than nk (this is the Induction
Step). We have produced a subsequence {ank

} of {an}. We still need to
show that {ank

} converges to L.

Let ε > 0. By the Archimedean Principle (Theorem 1-18), there is
K (ε) ∈ N such that 1/K (ε) < ε. If k > K (ε) then 1/k < ε and
ank

∈ (L− 1/k, L + 1/k) ⊂ (L− ε, L + ε). Therefore, by the definition of
limit of a subsequence we have {ank

} converges to L. That is, L is a
subsequential limit of {an}, as claimed.
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Exercise 2.2.8(a)

Exercise 2.2.8(a)

Exercise 2.2.8(a). Construct a sequence with exactly two subsequential
limits. Can this be done is such a way that no two terms of the sequence
are the same?

Solution. Consider the sequence {an} = {(−1)n}. Since for 1 > ε > 0,
the interval (L− ε, L + ε) can contain at most one of −1 and 1 (and these
are the only terms of the sequence), then these are the only possible
subsequential limits. The subsequence {a2n−1}∞n=1 = {−1,−1,−1, . . .}
converges to −1, and the subsequence {a2n}∞n=1 = {1, 1, 1, . . .} converges
to 1. So there are exactly two subsequential limits of {an}.

This can be done in such a way that no two terms are the same. Let

f (n) =

{
−1− 1/n n odd
1 + 1/n n even

and define {an} = {f (n)}. Then no two terms of {an} are equal.
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Exercise 2.2.8(a)

Exercise 2.2.8(a) (continued)

Exercise 2.2.8(a). Construct a sequence with exactly two subsequential
limits. Can this be done is such a way that no two terms of the sequence
are the same?

Solution (continued). The only intervals of the form (L− ε, L + ε) which
contain infinitely many terms of {an} for all ε > 0 are the ones for which
L = −1 or L = 1, so by Theorem 2-11 the only possible subsequential
limits are −1 and 1. Let ε > 0. Define No = Ne = 1/ε. Then for all
n ≥ No we have 1/n < ε and so the interval (−1− ε,−1 + ε) contains
infinitely many terms of {an}, namely those of odd subscripts where the
subscripts are greater than No . Similarly for all n ≥ Ne we have 1/n < ε
and so the interval (1− ε, 1 + ε) contains infinitely many terms of {an},
namely those of even subscripts where the subscripts are greater than Ne .
�
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Exercise 2.2.12(a)

Exercise 2.2.12(a)

Exercise 2.2.12(a). If {an} → L and if an ≤ L for infinitely many values
of n, then there is a subsequence of {an} that is increasing (i.e.,
nondecreasing) and converges to L.

Proof. Let {an} → L and suppose an ≤ L for infinitely many values of n.
If an = L for infinitely many values of n, then we can simply take a
constant subsequence of all L’s to get the desired subsequence. So without
loss of generality (“WLOG”), we can assume that only finitely many
an = L; say the last one has subscript N (take N = 0 if none of the an

equal L).

Similar to the proof of Theorem 2-11 we inductively construct an
increasing subsequence {ank

} of {an} that converges to L. For k = 1,
since there are infinitely many an ≤ L, we can choose one with subscript
greater than N and denote it an1 . For k = 2, since there are infinitely
many an ≤ L and {an} → L, we can choose an an with subscript greater
than n1, satisfying |an − L| < min{1/2, L− an1}, and denote it an2 . We
take these as the Base Cases.
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Exercise 2.2.12(a)

Exercise 2.2.12(a) (continued)

Proof (continued). Now suppose we have similarly chosen
an1 , an2 , . . . , ank

where n1 < n2 < · · · < nk and
|ani − L| < min{1/i , L− ani−1} for 2 ≤ i ≤ k (this is the Induction
Hypothesis). For the Induction Step, consider i = k + 1. Since there are
infinitely many an ≤ L and {an} → L, we can choose an an with subscript
greater than nk , satisfying |an − L| < min{1/(k + 1), L− ank

}, and denote
it ank+1

(this is the Induction Step). We have produced an increasing
subsequence {ank

} of {an}. We still need to show that {ank
} converges to

L.

Let ε > 0. By the Archimedean Principle (Theorem 1-18), there is
K (ε) ∈ N such that 1/K (ε) < ε. If k > K (ε) then 1/k < ε and
ank

∈ (L− 1/k, L + 1/k) ⊂ (L− ε, L + ε). Hence, by the definition of limit
of a subsequence we have {ank

} converges to L. Therefore, we have
constructed increasing subsequence {ank

} of {an} that converges to L, as
claimed.
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