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Theorem 2-12. The Bolzano-Weierstrass Theorem

Theorem 2-12

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.

Proof. Let A be a bounded set of real numbers. Since A is bounded, then
there is a positive M ∈ R such that A ⊂ [−M,M] = A0. Then A0 contains
an infinite number of points in A. Cut A0 into two closed subintervals of
equal length, [−M, 0] and [0,M]. Since A0 contains an infinite number of
points in A, the either [−M, 0] or [0,M] contains an infinite number of
points in A; denote the set containing an infinite number of points in A as
A1 and notice that the length of A1 is M.

Divide A1 into two closed
subintervals of equal length, and choose one of these subintervals that
contains infinitely many points of A and denote it as A2; notice the length
of A2 is M/2. Inductively create the sequence of sets Ak for each k ∈ N
such that Ak contains infinitely many points of A and the length of Ak is
M/2k−1.
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Theorem 2-12. The Bolzano-Weierstrass Theorem

Theorem 2-12 (continued 1)

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.

Proof (continued). Each Ak is a closed interval, so denote Ak = [ak , bk ].
By construction, Ak ⊃ Ak+1 and limk→∞(bk − ak) = limk→∞M/2k−1 = 0
by Exercise 2.2.2(c). Then by Theorem 2-7, ∩∞n=1 = {p} for some p.
Next, we prove that p is a limit point of set A.

Let ε > 0. Choose N(ε) = N ∈ N such that M/2N−1 < ε (such N(ε)
exists by the definition of the limit of a sequence, since
limk→∞M/2k−1 = 0). Now p ∈ AN , since p is in Ak for all k ∈ N, and
the length of AN is M/2N−1. Therefore,

(p − ε, p + ε) ⊃
[
p − M

2N−1
, p +

M

2N−1

]
⊃ AN .

This is illustrated below.
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Theorem 2-12. The Bolzano-Weierstrass Theorem

Theorem 2-12 (continued 2)

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.

Proof (continued).

Kirkwood’s Figure 2-6

Hence, (p − ε, p + ε) contains infinitely many points of A (since AN does).
Since ε > 0 is arbitrary, then by the definition of limit point of a set, we
have that p is a limit point of set A. That is, set A has at least one limit
point, as claimed.
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Theorem 2-14. Every bounded sequence has a convergent
subsequence

Theorem 2-14

Theorem 2-14. Every bounded sequence has a convergent subsequence.

Proof. Let {an} be a bounded sequence. First, suppose there is a number
L for which an infinite number of terms of {an} equal L, say
an1 = an2 = an3 = · · · = L where n1 < n2 < n3 < · · · . Then the constant
subsequence {ank

} = {an1 , an2 , an3 , . . .} converges to L.

If there is no such L repeated an infinite number of times in {an}, then
{an} but contain an infinite number of different terms. Let set A be the
set of terms in {an}. Then A is an infinite set and, by hypothesis, it is
bounded. By the Bolzano-Weierstrass Theorem (Theorem 2-12), there is a
limit point p of set A. So by the definition of limit point of a set, for all
ε > 0 the interval (p − ε, p + ε) contains an infinite number of points in
set A. That is, (p − ε, p + ε) contains an infinite number of terms of {an}.
Then by Theorem 2-11, p is a subsequential limit of {an}; that is,
bounded sequence {an} has a convergent subsequence as claimed.
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Theorem 2-15

Theorem 2-15

Theorem 2-15.

(a) A sequence that is unbounded above has a subsequence that
diverges to +∞.

(b) A sequence that is unbounded below has a subsequence that
diverges to −∞.

Proof. (a) Let {an} be sequence that is unbounded above. We give an
inductive construction of a subsequence of {an} that diverges to ∞, as
Kirkwood does (we could also give a recursive construction of the
subsequence).

Let P(k) be the statement that there is a positive integer nk > nk−1 such
that ank

> k. For the Base Case observe that, since {an} is unbounded
above, there is a term greater than 1; denote such a term as an1 . Then
an1 > 1 and P(1) is true. For the Induction Hypothesis, suppose that P(k)
holds for all k ∈ N with k ≤ `.
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Theorem 2-15

Theorem 2-15 (continued)

Theorem 2-15.

(a) A sequence that is unbounded above has a subsequence that
diverges to +∞.

(b) A sequence that is unbounded below has a subsequence that
diverges to −∞.

Proof (continued). For the Induction Step, we consider n = ` + 1.
Notice that there are infinitely many terms of {an} greater than ` + 1, for
if there were not then we could choose the last such term greater than
` + 1, say am, and then the sequence would be bounded above by
max{a1, a2, . . . , am, ` + 1}, contradicting the hypothesized unbounded
above property of {an}. So there is some term an`+1

in {an} where
n`+1 > n` and a`+1 > ` + 1. That is, P(k) holds for k = ` + 1 and the
Induction Step is established. So, by the Induction Principle, P(k) holds
for all k ∈ N. Therefore, there is a subsequence {ank

} of {an} such that
ank

> k for each k ∈ N. By the definition of diverge to infinity,
subsequence {ank

} diverges to ∞, as claimed.
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Exercise 2.3.16(a). lim an is a subsequential limit of {an}

Exercise 2.3.16(a)

Exercise 2.3.16(a). Let {an} be a sequence. Then lim sup an = lim an is
a subsequential limit of {an}.
Proof. First, suppose lim an = +∞. Let P be the set of (real number)
subsequential limits of {an}. Then P is not bounded above (or else, by the
Axiom of Completeness, P would have a real number lub). For each
k ∈ N, there must be infinitely many terms of {an} greater than k + 1, for
if there were not then we could choose the last such term greater than k,
say am, and then the sequence would be bounded above by
max{a1, a2, . . . , am, k + 1}, contradicting fact that P is not bounded
above.

For k = 1, there is some term of {an} greater than 1; denote it as
an1 . Recursively define {ank

} by letting ank+1
be greater than k + 1 and

nk+1 > nk (such ank+1
exists since there are infinitely many terms of {an}

greater than k + 1). Then for any M > 0, there is k ∈ N with k ≥ M (by
the Archimedean Principle, Theorem 1-18), so that {ank

} → +∞ (by the
definition of a sequence diverges to +∞). That is, lim an = +∞ is a
subsequential limit of {an}, as claimed.
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Exercise 2.3.16(a). lim an is a subsequential limit of {an}

Exercise 2.3.16(a) (continued 1)

Exercise 2.3.16(a). Let {an} be a sequence. Then lim sup an = lim an is
a subsequential limit of {an}.
Proof (continued). Second, suppose lim an = −∞. Let P be the set of
(real number) subsequential limits of {an}. Set P must be bounded above,
or else lim an = +∞ by the argument given above. If P is bounded below
then P has a real number glb by the Axiom of Completeness and, since
glb(P) ≤ lub(P), we cannot have lub(P) = lim an = −∞. Hence P cannot
be bounded below and for an real number −K − 1 there are infinitely
many terms of {an} less than −K − 1. For k = 1, there is some term of
{an} less than −1; denote it as an1 . Recursively define {ank

} by letting
ank+1

be less than −k − 1 and nk+1 > nk (such ank+1
exists since there are

infinitely many terms of {an} less than −k − 1). Then for any number K ,
there is k ∈ N with −k ≤ K (by the Archimedean Principle and Theorem
1-7(d)), so that {ank

} → −∞ (by the definition of a sequence diverges to
−∞). That is, lim an = −∞ is a subsequential limit of {an}, as claimed.
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Exercise 2.3.16(a). lim an is a subsequential limit of {an}

Exercise 2.3.16(a) (continued 2)

Exercise 2.3.16(a). Let {an} be a sequence. Then lim sup an = lim an is
a subsequential limit of {an}.
Proof (continued). Suppose lim an = b ∈ R. Let P be the set of (real
number) subsequential limits of {an}. We will construct a subsequence
which converges to b. Since (by definition of lim sup) b = lubP then for
ε = 1 there exists b1 ∈ P such that |b − b1| < 1/2 by Theorem 1-15(a).
Since b1 is a subsequential limit of of {an}, then there is term an1 of {an}
such that |b1 − an1 | < 1/2 by Theorem 2-11. Then

|b − an1 | = |b − b1 + b1 − an1 | ≤ |b − b1|+ |b1 − an1 | < 1/2 + 1/2 = 1.

We now create subsequence ank
recursively. Let k ∈ N with k > 1.

Consider ε = 1/k and choose bk ∈ P such that |b − bk | < 1/(2k) (which
can be done by Theorem 1-15(a)). There is a term ank

of {an} such that
|bk − ank

| < 1/(2k) and nk > nk−1 (which can be done by Corollary 2-11).
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Exercise 2.3.16(a). lim an is a subsequential limit of {an}

Exercise 2.3.16(a) (continued 3)

Exercise 2.3.16(a). Let {an} be a sequence. Then lim sup an = lim an is
a subsequential limit of {an}.

Proof (continued). Then

|b−ank
| = |b−bk+bk−ank

| ≤ |b−bk |+|bk−ank
| < 1/(2k)+1/(2k) = 1/k.

For any ε > 0, there is k ∈ N such that 1/k < ε by the Archimedean
Principle (Theorem 1-18). By the definition of limit of a sequence
{ank

} → b, so that b is a subsequential limit of {an}. That is, b = lim an

is a subsequential limit of {an}, as claimed.
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Theorem 2-17(a)

Theorem 2-17(a)

Theorem 2-17. Let {an} be a bounded sequence. Then

(a) lim an = L if and only if for all ε > 0, there exists infinitely
many terms of {an} in (L− ε, L + ε) but only finitely many
terms of {an} with an > L + ε.

Proof. (a) First, let lim an = L and let ε > 0 be given. Since L is a
subsequential limit of {an} by Exercise 2.3.16(a), then by Theorem 2-11
there are infinitely many terms of {an} in (L− ε, L + ε). ASSUME there
are an infinite number of terms of {a} with an > L + ε. Since {an} is
bounded above, say by M, there are infinitely many terms of {an} between
L + ε and M.

By Exercise 2.3.5, there is a subsequence {ank
} with a limit

at least as large as L + ε. But this means that L + ε is a subsequential
limit greater than lim an = L, a CONTRADICTION since L is an upper
bound for the set of subsequential limits. This contradiction shows that
the assumption that there are an infinite number of terms of {a} with
an > L + ε is false. Hence, there are only a finite number of terms of {an}
with an > L + ε, as claimed.
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many terms of {an} in (L− ε, L + ε) but only finitely many
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Proof (continued). Second, suppose {an} is a bounded sequence such
that for all ε > 0 there exists infinitely many terms of {an} in (L− ε, L + ε)
but only finitely many terms of {an} with an > L + ε. Since (L− ε, L + ε)
contains infinitely many terms of {an}, then by Theorem 2-11 L is a
subsequential limit of {an}. Let M > L and define ε′ = (M − L)/2. See
Kirkwood’s Figure 2-7 below. Then (M − ε, M + ε) contains only finitely
many terms of {an} (since every term in (M − ε′,M + ε′) is greater than
L + ε′). But this M not a subsequential limit of {an} (again by Theorem
2-11). Therefore, the greatest subsequential limit must be L. That is, by
Exercise 2.3.16, lim an = L as claimed.

() Analysis 1 December 1, 2023 14 / 20



Theorem 2-17(a)

Theorem 2-17(a) (continued)

Theorem 2-17. Let {an} be a bounded sequence. Then

(a) lim an = L if and only if for all ε > 0, there exists infinitely
many terms of {an} in (L− ε, L + ε) but only finitely many
terms of {an} with an > L + ε.

Proof (continued). Second, suppose {an} is a bounded sequence such
that for all ε > 0 there exists infinitely many terms of {an} in (L− ε, L + ε)
but only finitely many terms of {an} with an > L + ε. Since (L− ε, L + ε)
contains infinitely many terms of {an}, then by Theorem 2-11 L is a
subsequential limit of {an}. Let M > L and define ε′ = (M − L)/2. See
Kirkwood’s Figure 2-7 below. Then (M − ε, M + ε) contains only finitely
many terms of {an} (since every term in (M − ε′,M + ε′) is greater than
L + ε′). But this M not a subsequential limit of {an} (again by Theorem
2-11). Therefore, the greatest subsequential limit must be L. That is, by
Exercise 2.3.16, lim an = L as claimed.

() Analysis 1 December 1, 2023 14 / 20



Theorem 2-17(a)

Theorem 2-17(a) (continued)

Theorem 2-17. Let {an} be a bounded sequence. Then

(a) lim an = L if and only if for all ε > 0, there exists infinitely
many terms of {an} in (L− ε, L + ε) but only finitely many
terms of {an} with an > L + ε.

Proof (continued). Second, suppose {an} is a bounded sequence such
that for all ε > 0 there exists infinitely many terms of {an} in (L− ε, L + ε)
but only finitely many terms of {an} with an > L + ε. Since (L− ε, L + ε)
contains infinitely many terms of {an}, then by Theorem 2-11 L is a
subsequential limit of {an}. Let M > L and define ε′ = (M − L)/2. See
Kirkwood’s Figure 2-7 below. Then (M − ε, M + ε) contains only finitely
many terms of {an} (since every term in (M − ε′,M + ε′) is greater than
L + ε′). But this M not a subsequential limit of {an} (again by Theorem
2-11). Therefore, the greatest subsequential limit must be L. That is, by
Exercise 2.3.16, lim an = L as claimed.

() Analysis 1 December 1, 2023 14 / 20



Theorem 2-18(a)

Theorem 2-18(a)

Theorem 2-18.

(a) lim(an + bn) ≤ lim an + lim bn.

Proof. (a) Let M = lim an, L = lim bn, and let ε > 0. By Theorem 2-17,
there are a finite number of terms of {an} greater than or equal to L + ε/2
and a finite number of terms of {bn} greater then or equal to L + ε/2.
Then all terms of {an + bn}, except possible those with the same index as
one of the above mentioned terms of {an} or {bn} (of which there is a
finite number) satisfy

an + bn < (K + ε/2) + (L + ε/2) = (K + L) + ε.

So by Theorem 2-17, lim(an + bn) ≤ K + L. (We actually only use half of
Theorem 2-17, since we only get that this is less than or equal to K + L
and not equal to K + L.) This is the claim.
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Theorem 2-19(a)

Theorem 2-19(a)

Theorem 2-19. Let f and g be bounded functions with the same domain.
Then:

(a) sup(f + g) ≤ sup(f ) + sup(g).

Proof. (a) Since sup(f + g) = lub(R(f + g)), then by Theorem 2-8 there
exists a sequence {yn} of points yn ∈ R(f + g) such that
{yn} → sup(f + g). Now yn = (f + g)(xn)− f (xn) + g(xn) for some
xn ∈ D(f + g). But f (xn) ≤ sup(f ) and g(xn) ≤ sup(g) for all n ∈ N, so

sup(f + g) = lim yn = lim(f (xn) + g(xn)) ≤ sup(f ) + sup(g),

as claimed.
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Exercise 2.3.13. Cauchy sequences converge

Exercise 2.3.13

Exercise 2.3.13. Let {an} be a Cauchy sequence.

(a) Then {an} is bounded.

(b) There is at least one subsequential limit for {an}.
(c) There is no more than one subsequential limit of {an}.
(d) {an} converges.

Proof. (a) By the definition of a Cauchy sequence, for ε = 1 there exists
positive N(ε) =∈ R such that for all m, n > N(ε) we have |an − am| < 1.
In particular, with N1 = dN(ε) + 1e we have |am − aN1 | < 1 for all
m > N1. So |am| < |aN1 |+ 1 for all m > N1. Therefore,
M = max{|a1|, |a2|, . . . , |aN1 |, |aN1 |+ 1} is an upper bound for {an} and
−M is a lower bound.

(b) Since {an} is bounded by (a), Theorem 2-14 implies that {an} has a
convergent subsequence.
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Exercise 2.3.13. Cauchy sequences converge

Exercise 2.3.13 (continued 1)

Exercise 2.3.13. Let {an} be a Cauchy sequence.

(c) There is no more than one subsequential limit of {an}.
(d) {an} converges.

Proof (continued). (c) ASSUME L 6= M are both subsequential limits of
{an}. Let {an`

} → L and {anm} → M where, say, L < M. Let
ε = (M − L)/3. Then, by the definition of limit of a subsequence, there
exists positive NL(ε) = NL such that for all ` > NL we have
an`

∈ (L− ε, L + ε) = ((4L−M)/3, (2L + M)/3). Similarly, there exists
NM(ε) = NM such that for all m > NM we have
anm ∈ (M − ε, M + ε) = ((L + 2M)/3, (4M − L)/3). Let N be any positive
real number. Then there some an`

∈ ((4L−M)/3, (2L + M)/3) and there
is some anm ∈ ((L + 2M)/3, (4M − L)/3) where `,m > N (since there are
infinitely many such an`

and anm by Theorem 2-11).
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Exercise 2.3.13. Cauchy sequences converge

Exercise 2.3.13 (continued 2)

Exercise 2.3.13. Let {an} be a Cauchy sequence.

(c) There is no more than one subsequential limit of {an}.
(d) {an} converges.

Proof (continued). If we take ε′ = (L + 2M)/3− (2L + M)/3
= (M − L)/3, then there can be no positive real N such that for all
`,m > N we have |an`

− anm | < ε′ = (M − L)/3 (because of the an`
and

anm just described). That is, {an} is not Cauchy, a CONTRADICTION. So
the assumption that Cauchy sequence {an} has two distinct subsequential
limits is false, and hence there is no more than one subsequential limit of
{an}, as claimed.

(d) Since there is only one subsequential limit by part (c), then by
Exercise 2.3.16 we have that both lim an and lim an equal this
subsequential limit. Therefore, lim an = lim an and hence by Corollary
2-17, the sequence converges, as claimed.
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Exercise 2.3.14. A convergent sequence is Cauchy

Exercise 2.3.14

Exercise 2.3.14. A convergent sequence is Cauchy.

Proof. Let ε > 0. If {an} is convergent, then there exists positive
N(ε) ∈ R such that for all n > N(ε) we have |an − L| < ε/2. Let
n,m > N. Then by the Triangle Inequality

|an − am| = |an − L + L− am| = |(an − L)− (am − L)|

≤ |an − L|+ |am − L| = ε/2 + ε/2 = ε.

Therefore, by definition, {an} is Cauchy, as claimed.
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