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Theorem 2-12

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.
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Theorem 2-12

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.

Proof. Let A be a bounded set of real numbers. Since A is bounded, then
there is a positive M € R such that A C [-M, M] = Ag. Then Ag contains
an infinite number of points in A. Cut Ag into two closed subintervals of
equal length, [-M, 0] and [0, M]. Since Ag contains an infinite number of
points in A, the either [-M, 0] or [0, M] contains an infinite number of
points in A; denote the set containing an infinite number of points in A as
A and notice that the length of A; is M.
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Theorem 2-12

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.

Proof. Let A be a bounded set of real numbers. Since A is bounded, then
there is a positive M € R such that A C [-M, M] = Ag. Then Ag contains
an infinite number of points in A. Cut Ag into two closed subintervals of
equal length, [-M, 0] and [0, M]. Since Ag contains an infinite number of
points in A, the either [-M, 0] or [0, M] contains an infinite number of
points in A; denote the set containing an infinite number of points in A as
A1 and notice that the length of A; is M. Divide A;j into two closed
subintervals of equal length, and choose one of these subintervals that
contains infinitely many points of A and denote it as Ay; notice the length
of Ay is M/2. Inductively create the sequence of sets Ay for each k € N
such that Ay contains infinitely many points of A and the length of Ay is
M j2k—1,
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Theorem 2-12 (continued 1)

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.

Proof (continued). Each Ay is a closed interval, so denote Ay = [ax, bk].
By construction, Ax D Axy1 and limy oo (bx — ak) = limy_oo M/2k71 =0
by Exercise 2.2.2(c). Then by Theorem 2-7, N, = {p} for some p.
Next, we prove that p is a limit point of set A.
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Theorem 2-12 (continued 1)

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.

Proof (continued). Each Ay is a closed interval, so denote Ay = [ax, bk].
By construction, Ax D Axy1 and limy oo (bx — ak) = limy_oo M/2k71 =0
by Exercise 2.2.2(c). Then by Theorem 2-7, N, = {p} for some p.
Next, we prove that p is a limit point of set A.

Let € > 0. Choose N(¢) = N € N such that M/2N=1 < ¢ (such N(e)
exists by the definition of the limit of a sequence, since

limg_0o M/2k71 = 0). Now p € Ap, since p is in A, for all k € N, and
the length of Ay is M/2N=1. Therefore,

M M
(p—ep+e)D |p—oyg:P+ o1 | 2 An:

This is illustrated below.
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Theorem 2-12 (continued 2)

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.

Proof (continued).

m
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Kirkwood's Figure 2-6
Hence, (p — ¢, p + €) contains infinitely many points of A (since Ay does).
Since € > 0 is arbitrary, then by the definition of limit point of a set, we

have that p is a limit point of set A. That is, set A has at least one limit
point, as claimed. ]
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Theorem 2-14

Theorem 2-14. Every bounded sequence has a convergent subsequence.
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Theorem 2-14

Theorem 2-14. Every bounded sequence has a convergent subsequence.

Proof. Let {a,} be a bounded sequence. First, suppose there is a number
L for which an infinite number of terms of {a,} equal L, say

an, = ap, = ap; = -+ = L where ny < np < n3 <---. Then the constant
subsequence {a, } = {an,, an,, ans, ...} converges to L.
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Theorem 2-14

Theorem 2-14. Every bounded sequence has a convergent subsequence.

Proof. Let {a,} be a bounded sequence. First, suppose there is a number
L for which an infinite number of terms of {a,} equal L, say

an, = ap, = ap; = -+ = L where ny < np < n3 <---. Then the constant
subsequence {a, } = {an,, an,, ans, ...} converges to L.

If there is no such L repeated an infinite number of times in {a,}, then
{an} but contain an infinite number of different terms. Let set A be the
set of terms in {a,}. Then A is an infinite set and, by hypothesis, it is
bounded. By the Bolzano-Weierstrass Theorem (Theorem 2-12), there is a
limit point p of set A. So by the definition of limit point of a set, for all

e > 0 the interval (p — €, p + €) contains an infinite number of points in
set A. Thatis, (p — &, p+¢) contains an infinite number of terms of {a,}.
Then by Theorem 2-11, p is a subsequential limit of {a,}; that is,
bounded sequence {a,} has a convergent subsequence as claimed. 0
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Theorem 2-15

Theorem 2-15.

(a) A sequence that is unbounded above has a subsequence that
diverges to +oo.

(b) A sequence that is unbounded below has a subsequence that
diverges to —oo.
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Theorem 2-15

Theorem 2-15.
(a) A sequence that is unbounded above has a subsequence that
diverges to +oo.

(b) A sequence that is unbounded below has a subsequence that
diverges to —oo.

Proof. (a) Let {a,} be sequence that is unbounded above. We give an
inductive construction of a subsequence of {a,} that diverges to oo, as
Kirkwood does (we could also give a recursive construction of the
subsequence).
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Theorem 2-15

Theorem 2-15.

(a) A sequence that is unbounded above has a subsequence that
diverges to +oo.

(b) A sequence that is unbounded below has a subsequence that
diverges to —oo.

Proof. (a) Let {a,} be sequence that is unbounded above. We give an
inductive construction of a subsequence of {a,} that diverges to oo, as
Kirkwood does (we could also give a recursive construction of the
subsequence).

Let P(k) be the statement that there is a positive integer nx > ng_1 such
that a,, > k. For the Base Case observe that, since {a,} is unbounded
above, there is a term greater than 1; denote such a term as a,,. Then
ap, > 1 and P(1) is true. For the Induction Hypothesis, suppose that P(k)
holds for all k € N with k < /.
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Theorem 2-15 (continued)

Theorem 2-15.
(a) A sequence that is unbounded above has a subsequence that
diverges to +o0.
(b) A sequence that is unbounded below has a subsequence that
diverges to —oo.
Proof (continued). For the Induction Step, we consider n = ¢ + 1.
Notice that there are infinitely many terms of {a,} greater than ¢+ 1, for
if there were not then we could choose the last such term greater than
{41, say am,, and then the sequence would be bounded above by
max{ai, a2, ...,am, ¢ + 1}, contradicting the hypothesized unbounded
above property of {a,}. So there is some term a,,,, in {a,} where
ney1 > ng and agpq > £+ 1.
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Theorem 2-15 (continued)

Theorem 2-15.
(a) A sequence that is unbounded above has a subsequence that
diverges to +o0.
(b) A sequence that is unbounded below has a subsequence that
diverges to —oo.
Proof (continued). For the Induction Step, we consider n = ¢ + 1.
Notice that there are infinitely many terms of {a,} greater than ¢+ 1, for
if there were not then we could choose the last such term greater than
{41, say am,, and then the sequence would be bounded above by
max{ai, a2, ...,am, ¢ + 1}, contradicting the hypothesized unbounded
above property of {a,}. So there is some term a,,,, in {a,} where
ne+1 > ng and ag11 > ¢+ 1. That is, P(k) holds for k = ¢ + 1 and the
Induction Step is established. So, by the Induction Principle, P(k) holds
for all k € N. Therefore, there is a subsequence {ap, } of {a,} such that
an, > k for each k € N. By the definition of diverge to infinity,
subsequence {a,, } diverges to oo, as claimed.
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Exercise 2.3.16(a) lima, is a subsequential limit of {a,}

Exercise 2.3.16(a)

Exercise 2.3.16(a). Let {a,} be a sequence. Then limsup a, = lim a, is
a subsequential limit of {a,}.
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Exercise 2.3.16(a) lima, is a subsequential limit of {a,}

Exercise 2.3.16(a)

Exercise 2.3.16(a). Let {a,} be a sequence. Then limsup a, = lim a, is
a subsequential limit of {a,}.

Proof. First, suppose lima, = +o00. Let P be the set of (real number)
subsequential limits of {a,}. Then P is not bounded above (or else, by the
Axiom of Completeness, P would have a real number lub). For each

k € N, there must be infinitely many terms of {a,} greater than k + 1, for
if there were not then we could choose the last such term greater than k,
say am, and then the sequence would be bounded above by

max{a1, a2, ...,am, k + 1}, contradicting fact that P is not bounded
above.
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Exercise 2.3.16(a) lima, is a subsequential limit of {a,}

Exercise 2.3.16(a)

Exercise 2.3.16(a). Let {a,} be a sequence. Then limsup a, = lim a, is
a subsequential limit of {a,}.

Proof. First, suppose lima, = +o00. Let P be the set of (real number)
subsequential limits of {a,}. Then P is not bounded above (or else, by the
Axiom of Completeness, P would have a real number lub). For each

k € N, there must be infinitely many terms of {a,} greater than k + 1, for
if there were not then we could choose the last such term greater than k,
say am, and then the sequence would be bounded above by

max{a1, a2, ...,am, k + 1}, contradicting fact that P is not bounded
above. For k =1, there is some term of {a,} greater than 1; denote it as
ap,. Recursively define {a,,} by letting a,,,,, be greater than k + 1 and
N1 > ni (such ap, ., exists since there are infinitely many terms of {a,}
greater than k 4+ 1). Then for any M > 0, there is k € N with k > M (by
the Archimedean Principle, Theorem 1-18), so that {ap, } — 400 (by the
definition of a sequence diverges to 4+0c0). That is, lima, = +oc is a
subsequential limit of {a,}, as claimed.
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Exercise 2.3.16(a) lima, is a subsequential limit of {a,}

Exercise 2.3.16(a) (continued 1)

Exercise 2.3.16(a). Let {a,} be a sequence. Then limsupa, = lima, is
a subsequential limit of {a,}.

Proof (continued). Second, suppose lim a, = —co. Let P be the set of
(real number) subsequential limits of {a,}. Set P must be bounded above,
or else lim a, = +o0o by the argument given above. If P is bounded below
then P has a real number glb by the Axiom of Completeness and, since
glb(P) < lub(P), we cannot have lub(P) = lim a, = —cc. Hence P cannot
be bounded below and for an real number —K — 1 there are infinitely
many terms of {a,} less than —K — 1. For k =1, there is some term of
{an} less than —1; denote it as ap,.
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Exercise 2.3.16(a) lima, is a subsequential limit of {a,}

Exercise 2.3.16(a) (continued 1)

Exercise 2.3.16(a). Let {a,} be a sequence. Then limsupa, = lima, is
a subsequential limit of {a,}.

Proof (continued). Second, suppose lim a, = —co. Let P be the set of
(real number) subsequential limits of {a,}. Set P must be bounded above,
or else lim a, = +o0o by the argument given above. If P is bounded below
then P has a real number glb by the Axiom of Completeness and, since
glb(P) < lub(P), we cannot have lub(P) = lim a, = —cc. Hence P cannot
be bounded below and for an real number —K — 1 there are infinitely
many terms of {a,} less than —K — 1. For k =1, there is some term of
{an} less than —1; denote it as a,,. Recursively define {ap, } by letting
an,,, be less than —k — 1 and ny41 > ny (such a,, ., exists since there are
infinitely many terms of {a,} less than —k — 1). Then for any number K,
there is k € N with —k < K (by the Archimedean Principle and Theorem
1-7(d)), so that {ap, } — —oo (by the definition of a sequence diverges to
—o0). That is, lima, = —oo is a subsequential limit of {a,}, as claimed.
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Exercise 2.3.16(a) lima, is a subsequential limit of {a,}

Exercise 2.3.16(a) (continued 2)

Exercise 2.3.16(a). Let {a,} be a sequence. Then limsup a, = lim a, is
a subsequential limit of {a,}.

Proof (continued). Suppose lima, = b € R. Let P be the set of (real
number) subsequential limits of {a,}. We will construct a subsequence
which converges to b. Since (by definition of lim sup) b = lub P then for
e = 1 there exists by € P such that |b— b;| < 1/2 by Theorem 1-15(a).
Since by is a subsequential limit of of {a,}, then there is term a,, of {a,}
such that |b; — ap,| < 1/2 by Theorem 2-11. Then

\b—an1|:\b—b1+bl—anl\g\b—b1]+|b1—a,,1]<1/2—|—1/2:1.
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Exercise 2.3.16(a) lima, is a subsequential limit of {a,}

Exercise 2.3.16(a) (continued 2)

Exercise 2.3.16(a). Let {a,} be a sequence. Then limsup a, = lim a, is
a subsequential limit of {a,}.

Proof (continued). Suppose lima, = b € R. Let P be the set of (real
number) subsequential limits of {a,}. We will construct a subsequence
which converges to b. Since (by definition of lim sup) b = lub P then for
e = 1 there exists by € P such that |b— b;| < 1/2 by Theorem 1-15(a).
Since by is a subsequential limit of of {a,}, then there is term a,, of {a,}
such that |b; — ap,| < 1/2 by Theorem 2-11. Then

\b—an1|:\b—b1+bl—anl\g\b—b1]+|b1—a,,1]<1/2—|—1/2:1.

We now create subsequence aj, recursively. Let k € N with k > 1.
Consider ¢ = 1/k and choose by € P such that |b — bx| < 1/(2k) (which
can be done by Theorem 1-15(a)). There is a term a,, of {a,} such that
|bk — an,| < 1/(2k) and nx > nk_1 (which can be done by Corollary 2-11).
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Exercise 2.3.16(a) lima, is a subsequential limit of {a,}

Exercise 2.3.16(a) (continued 3)

Exercise 2.3.16(a). Let {a,} be a sequence. Then limsup a, = lim a, is
a subsequential limit of {a,}.

Proof (continued). Then
|b—ap,| = |b—bk+bk—an,| < |b—bk|+|bk—an,| < 1/(2k)+1/(2k) = 1/k.

For any ¢ > 0, there is k € N such that 1/k < ¢ by the Archimedean
Principle (Theorem 1-18). By the definition of limit of a sequence

{an,} — b, so that b is a subsequential limit of {a,}. Thatis, b= lima,
is a subsequential limit of {a,}, as claimed. O
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Theorem 2-17(a)

Theorem 2-17(a)

Theorem 2-17. Let {a,} be a bounded sequence. Then
(a) lima, = L if and only if for all € > 0, there exists infinitely
many terms of {a,} in (L — &, L 4 ¢) but only finitely many
terms of {a,} with a, > L +«.
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Theorem 2-17(a)

Theorem 2-17(a)

Theorem 2-17. Let {a,} be a bounded sequence. Then
(a) lima, = L if and only if for all € > 0, there exists infinitely
many terms of {a,} in (L — &, L 4 ¢) but only finitely many
terms of {a,} with a, > L +«.
Proof. (a) First, let lima, = L and let € > 0 be given. Since L is a
subsequential limit of {a,} by Exercise 2.3.16(a), then by Theorem 2-11
there are infinitely many terms of {a,} in (L — ¢, L + ¢). ASSUME there
are an infinite number of terms of {a} with a, > L+ €. Since {a,} is
bounded above, say by M, there are infinitely many terms of {a,} between
L+ e and M.
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Theorem 2-17(a)

Theorem 2-17(a)

Theorem 2-17. Let {a,} be a bounded sequence. Then
(a) lima, = L if and only if for all € > 0, there exists infinitely
many terms of {a,} in (L — &, L 4 ¢) but only finitely many
terms of {a,} with a, > L +«.
Proof. (a) First, let lima, = L and let € > 0 be given. Since L is a
subsequential limit of {a,} by Exercise 2.3.16(a), then by Theorem 2-11
there are infinitely many terms of {a,} in (L — ¢, L + ¢). ASSUME there
are an infinite number of terms of {a} with a, > L+ €. Since {a,} is
bounded above, say by M, there are infinitely many terms of {a,} between
L + ¢ and M. By Exercise 2.3.5, there is a subsequence {a,, } with a limit
at least as large as L 4+ €. But this means that L 4 ¢ is a subsequential
limit greater than lima, = L, a CONTRADICTION since L is an upper
bound for the set of subsequential limits. This contradiction shows that
the assumption that there are an infinite number of terms of {a} with
ap > L+ ¢ is false. Hence, there are only a finite number of terms of {a,}
with a, > L 4 ¢, as claimed.
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Theorem 2-17(a)

Theorem 2-17(a) (continued)

Theorem 2-17. Let {a,} be a bounded sequence. Then
(a) lima, = L if and only if for all ¢ > 0, there exists infinitely
many terms of {a,} in (L —¢, L+ ¢) but only finitely many
terms of {ap} with a, > L +«.
Proof (continued). Second, suppose {a,} is a bounded sequence such
that for all € > 0 there exists infinitely many terms of {a,} in (L —¢, L+¢)
but only finitely many terms of {a,} with a, > L+ ¢. Since (L —¢,L+¢)
contains infinitely many terms of {a,}, then by Theorem 2-11 L is a
subsequential limit of {a,}.
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Theorem 2-17(a)

Theorem 2-17(a) (continued)

Theorem 2-17. Let {a,} be a bounded sequence. Then
(a) lima, = L if and only if for all ¢ > 0, there exists infinitely

many terms of {a,} in (L —¢, L+ ¢) but only finitely many

terms of {ap} with a, > L +«.
Proof (continued). Second, suppose {a,} is a bounded sequence such
that for all € > 0 there exists infinitely many terms of {a,} in (L —¢, L+¢)
but only finitely many terms of {a,} with a, > L+ ¢. Since (L —¢,L+¢)
contains infinitely many terms of {a,}, then by Theorem 2-11 L is a
subsequential limit of {a,}. Let M > L and define ¢’ = (M — L)/2. See
Kirkwood's Figure 2-7 below. Then (M — ¢, M + ) contains only finitely
many terms of {a,} (since every term in (M — &', M + ¢’) is greater than
L +€"). But this M not a subsequential limit of {a,} (again by Theorem
2-11). Therefore, the greatest subsequential limit must be L. That is, by
Exercise 2.3.16, lim a,, = L as claimed. O

| 1 | |
I T T T

L Lte=M-¢ M M+e
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Theorem 2-17(a)

Theorem 2-17(a) (continued)

Theorem 2-17. Let {a,} be a bounded sequence. Then
(a) lima, = L if and only if for all ¢ > 0, there exists infinitely

many terms of {a,} in (L —¢, L+ ¢) but only finitely many

terms of {ap} with a, > L +«.
Proof (continued). Second, suppose {a,} is a bounded sequence such
that for all € > 0 there exists infinitely many terms of {a,} in (L —¢, L+¢)
but only finitely many terms of {a,} with a, > L+ ¢. Since (L —¢,L+¢)
contains infinitely many terms of {a,}, then by Theorem 2-11 L is a
subsequential limit of {a,}. Let M > L and define ¢’ = (M — L)/2. See
Kirkwood's Figure 2-7 below. Then (M — ¢, M + ) contains only finitely
many terms of {a,} (since every term in (M — &', M + ¢’) is greater than
L +€"). But this M not a subsequential limit of {a,} (again by Theorem
2-11). Therefore, the greatest subsequential limit must be L. That is, by
Exercise 2.3.16, lim a,, = L as claimed. O
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L Lte=M-¢ M M+e
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Theorem 2-18(a)

Theorem 2-18(a)

Theorem 2-18.
(a) lim(a, + b,) < lima, + lim by,.
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Theorem 2-18(a)

Theorem 2-18(a)

Theorem 2-18.
(a) lim(a, + b,) < lima, + lim by,.

Proof. (a) Let M =lima,, L =1limb,, and let ¢ > 0. By Theorem 2-17,
there are a finite number of terms of {a,} greater than or equal to L +¢/2
and a finite number of terms of {b,} greater then or equal to L + /2.
Then all terms of {a, + b,}, except possible those with the same index as
one of the above mentioned terms of {a,} or {b,} (of which there is a
finite number) satisfy

an+ by <(K+¢/2)+(L+¢/2)=(K+L)+e.
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Theorem 2-18(a)

Theorem 2-18(a)

Theorem 2-18.
(a) lim(a, + b,) < lima, + lim by,.

Proof. (a) Let M =lima,, L =1limb,, and let ¢ > 0. By Theorem 2-17,
there are a finite number of terms of {a,} greater than or equal to L +¢/2
and a finite number of terms of {b,} greater then or equal to L + /2.
Then all terms of {a, + b,}, except possible those with the same index as
one of the above mentioned terms of {a,} or {b,} (of which there is a
finite number) satisfy

an+ by <(K+¢/2)+(L+¢/2)=(K+L)+e.

So by Theorem 2-17, lim(a, + b,) < K + L. (We actually only use half of
Theorem 2-17, since we only get that this is less than or equal to K + L
and not equal to K 4 L.) This is the claim. 0
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Theorem 2-19(a)

Theorem 2-19(a)

Theorem 2-19. Let f and g be bounded functions with the same domain.
Then:

(a) sup(f + g) < sup(f) + sup(g).

Analysis 1 December 1, 2023 16 / 20



Theorem 2-19(a)

Theorem 2-19(a)

Theorem 2-19. Let f and g be bounded functions with the same domain.
Then:

(a) sup(f + g) < sup(f) + sup(g).

Proof. (a) Since sup(f + g) = lub(R(f + g)), then by Theorem 2-8 there
exists a sequence {y,} of points y, € R(f + g) such that

{yn} — sup(f + g). Now y, = (f + g)(xn) — f(xn) + g(xn) for some

xn € D(f 4 g). But f(x,) < sup(f) and g(x,) < sup(g) for all n € N, so

sup(f +g) = lim y, = lim(f(xn) + g(xn)) < sup(f) +sup(g),

as claimed. ]
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Exercise 2.3.13

Exercise 2.3.13. Let {a,} be a Cauchy sequence.

(a) Then {ap} is bounded.

(b) There is at least one subsequential limit for {a,}.
(c) There is no more than one subsequential limit of {a,}.
(d)

d) {an} converges.
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Exercise 2.3.13

Exercise 2.3.13. Let {a,} be a Cauchy sequence.

(a) Then {ap} is bounded.

(b) There is at least one subsequential limit for {a,}.
(c) There is no more than one subsequential limit of {a,}.
(d)

d) {an} converges.

Proof. (a) By the definition of a Cauchy sequence, for € = 1 there exists
positive N(g) =€ R such that for all m,n > N(e) we have |a, — am| < 1.
In particular, with Ny = [N(e) 4+ 1] we have |a, — an,| < 1 for all

m > Ni. So |am| < |an,| + 1 for all m > Nj. Therefore,

M = max{|a1|,|a2],...,|an, |, |an,| + 1} is an upper bound for {a,} and
—M is a lower bound. O
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Exercise 2.3.13. Cauchy sequences converge

Exercise 2.3.13

Exercise 2.3.13. Let {a,} be a Cauchy sequence.
(a) Then {ap} is bounded.
(b) There is at least one subsequential limit for {a,}.
(c) There is no more than one subsequential limit of {a,}.
(d)

{an} converges.

Proof. (a) By the definition of a Cauchy sequence, for € = 1 there exists
positive N(g) =€ R such that for all m,n > N(e) we have |a, — am| < 1.
In particular, with Ny = [N(e) 4+ 1] we have |a, — an,| < 1 for all

m > Ni. So |am| < |an,| + 1 for all m > Nj. Therefore,

M = max{|a1|,|a2],...,|an, |, |an,| + 1} is an upper bound for {a,} and
—M is a lower bound. O

(b) Since {a,} is bounded by (a), Theorem 2-14 implies that {a,} has a
convergent subsequence. O
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Exercise 2.3.13 (continued 1)

Exercise 2.3.13. Let {a,} be a Cauchy sequence.
(c) There is no more than one subsequential limit of {a,}.

(d) {an} converges.

Proof (continued). (c) ASSUME L # M are both subsequential limits of
{an}. Let {ap,} — L and {a,,,} — M where, say, L < M. Let

e = (M —L)/3. Then, by the definition of limit of a subsequence, there
exists positive Ny (¢) = N such that for all £ > N; we have

ap, € (L—e,L+¢)=((4L— M)/3,(2L+ M)/3). Similarly, there exists
Nu(g) = Np such that for all m > Ny, we have

ap, € (M—e,M+¢e)=((L+2M)/3,(4M —L)/3).

m
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Exercise 2.3.13 (continued 1)

Exercise 2.3.13. Let {a,} be a Cauchy sequence.
(c) There is no more than one subsequential limit of {a,}.

(d) {an} converges.

Proof (continued). (c) ASSUME L # M are both subsequential limits of
{an}. Let {ap,} — L and {a,,,} — M where, say, L < M. Let

e = (M —L)/3. Then, by the definition of limit of a subsequence, there
exists positive Ny (¢) = N such that for all £ > N; we have

ap, € (L—e,L+¢)=((4L— M)/3,(2L+ M)/3). Similarly, there exists
Nu(g) = Np such that for all m > Ny, we have

an, € M—e,M+¢e)=((L+2M)/3,(4M — L)/3). Let N be any positive
real number. Then there some a,, € ((4L — M)/3,(2L + M)/3) and there
is some ap,, € ((L+2M)/3,(4M — L)/3) where £,m > N (since there are
infinitely many such a,, and a,,, by Theorem 2-11).
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Exercise 2.3.13 (continued 2)

Exercise 2.3.13. Let {a,} be a Cauchy sequence.
(c) There is no more than one subsequential limit of {a,}.

(d) {an} converges.

Proof (continued). If we take ¢’ = (L +2M)/3 — (2L + M)/3

= (M — L)/3, then there can be no positive real N such that for all
¢,m> N we have |ap, — ap,,| <& = (M — L)/3 (because of the a,, and
ap,, just described). That is, {a,} is not Cauchy, a CONTRADICTION. So
the assumption that Cauchy sequence {a,} has two distinct subsequential
limits is false, and hence there is no more than one subsequential limit of
{an}, as claimed. O
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Exercise 2.3.13 (continued 2)

Exercise 2.3.13. Let {a,} be a Cauchy sequence.
(c) There is no more than one subsequential limit of {a,}.

(d) {an} converges.

Proof (continued). If we take ¢’ = (L +2M)/3 — (2L + M)/3

= (M — L)/3, then there can be no positive real N such that for all
¢,m> N we have |ap, — ap,,| <& = (M — L)/3 (because of the a,, and
ap,, just described). That is, {a,} is not Cauchy, a CONTRADICTION. So
the assumption that Cauchy sequence {a,} has two distinct subsequential
limits is false, and hence there is no more than one subsequential limit of
{an}, as claimed. O

(d) Since there is only one subsequential limit by part (c), then by
Exercise 2.3.16 we have that both lim a, and lim a,, equal this
subsequential limit. Therefore, lim a, = lim a, and hence by Corollary
2-17, the sequence converges, as claimed. O
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Exercise 2.3.14

Exercise 2.3.14. A convergent sequence is Cauchy.
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Exercise 2.3.14. A convergent sequence is Cauchy

Exercise 2.3.14

Exercise 2.3.14. A convergent sequence is Cauchy.

Proof. Let € > 0. If {a,} is convergent, then there exists positive
N(e) € R such that for all n > N(g) we have |a, — L| < /2. Let
n,m > N. Then by the Triangle Inequality

lan —am|=lan—L+L—am| =|(an— L) — (am — L)|

<lan—Ll+|am— L =¢/2+¢c/2=¢.

Therefore, by definition, {a,} is Cauchy, as claimed.
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