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Theorem 3-1

Theorem 3-1. The intervals (a, b), (a,00), and (—o0, a) are open sets.
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Theorem 3-1

Theorem 3-1. The intervals (a, b), (a,00), and (—o0, a) are open sets.

Proof. For interval U = (a, b), let x € (a,b). Then a < x < b. Define
0(x) = min{x — a, b — x} (see Kirkwood's Figure 3-1 below). Then
a=a+x—x=x—(x—a)<x—4(x) (since §y(x) < x—aor

—0(x) > —(x —a) or —(x — a) < —d(x)), and (since 6(x) < b — x)
x+0(x) <x+(b—x)=b, sothat a < x — §(x) < x+ d(x) < b.
Therefore (x — d(x), x 4+ d(x)) C (a, b) = U and, by the definition of open
set, (a, b) is open.
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Theorem 3-1

Theorem 3-1. The intervals (a, b), (a,00), and (—o0, a) are open sets.

Proof. For interval U = (a, b), let x € (a,b). Then a < x < b. Define
0(x) = min{x — a, b — x} (see Kirkwood's Figure 3-1 below). Then
a=a+x—x=x—(x—a)<x—4(x) (since §y(x) < x—aor

—0(x) > —(x —a) or —(x — a) < —d(x)), and (since 6(x) < b — x)
x+0(x) <x+(b—x)=b, sothat a < x — §(x) < x+ d(x) < b.
Therefore (x — d(x), x 4+ d(x)) C (a, b) = U and, by the definition of open
set, (a, b) is open.
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Theorem 3-1 (continued)

Theorem 3-1. The intervals (a, b), (a,00), and (—oo, a) are open sets.

Proof (continued). For interval U = (a,00), let x € (a,00). Then a < x.
Define §(x) =x —a. Thena=a+x—x=x—(x—a) =x—d(x), and
x+9(x) =x+(x—a) =2x —a < o0, so that

a=x—0(x) < x4 d(x) < co. Therefore

(x = d(x),x + d(x)) C (a,00) = U and, by the definition of open set,

(a, 00) is open.
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Theorem 3-1 (continued)

Theorem 3-1. The intervals (a, b), (a,00), and (—oo, a) are open sets.

Proof (continued). For interval U = (a,00), let x € (a,00). Then a < x.
Define §(x) =x —a. Thena=a+x—x=x—(x—a) =x—d(x), and
x+9(x) =x+(x—a) =2x —a < o0, so that

a=x—0(x) < x4 d(x) < co. Therefore

(x = d(x),x + d(x)) C (a,00) = U and, by the definition of open set,

(a, 00) is open.

For interval U = (—o0, a), let x € (—o0, a). Then x < a. Define
d(x)=a—x. Then —oo < 2x —a=x—(a— x) = x — J(x) and
x+0(x) =x+(a—x)=a, so that —oo < x — §(x) < x+ d(x) = a.
Therefore (x — d(x), x 4+ d(x)) C (—o0,a) = U and, by the definition of

open set, (—o0, a) is open. O
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Theorem 3-2. Open unions and intersections of open sets

Theorem 3-2. The open sets satisfy:

(a) If {U1, Ua, ..., Up} is a finite collection of open sets, then
My—1 Uk is an open set.

(b) If {Uy} is any collection (finite, infinite, countable, or
uncountable) of open sets, then U, U, is an open set.
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Theorem 3-2. Open unions and intersections of open sets

Theorem 3-2. The open sets satisfy:
(a) If {U1, Ua, ..., Up} is a finite collection of open sets, then
My—1 Uk is an open set.
(b) If {Uy} is any collection (finite, infinite, countable, or
uncountable) of open sets, then U, U, is an open set.

Proof. (a) Let Ui, Us, ..., U, be open sets and let x € N]_; Ux. Since Uy
is open and x € Uy, then there is §x(x) > 0 such that

(x — 0k(x), x + dk(x)) C Ux, and this holds for every k =1,2,...,n.
Define 0(x) = min{d1(x), d2(x), ..., dn(x)} = mini<k<n{dk(x)}. Notice
that since J(x) is a minimum over a finite set of positive numbers so that
d(x) is positive (we could not do this for an infinite collection of dx(x)’s).
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Theorem 3-2. Open unions and intersections of open sets

Theorem 3-2. The open sets satisfy:
(a) If {U1, Ua, ..., Up} is a finite collection of open sets, then
My—1 Uk is an open set.
(b) If {Uy} is any collection (finite, infinite, countable, or
uncountable) of open sets, then U, U, is an open set.

Proof. (a) Let Ui, Us, ..., U, be open sets and let x € N]_; Ux. Since Uy
is open and x € Uy, then there is §x(x) > 0 such that

(x — 0k(x), x + dk(x)) C Ux, and this holds for every k =1,2,...,n.
Define 0(x) = min{d1(x), d2(x), ..., dn(x)} = mini<k<n{dk(x)}. Notice
that since J(x) is a minimum over a finite set of positive numbers so that
d(x) is positive (we could not do this for an infinite collection of dx(x)’s).
Then (x — d(x), x + d(x)) C (x — dk(x), x + dk(x)) C Uy for each
k=1,2,...,n. Therefore (x — 0(x),x + d(x)) C NJ_; Ux. That is, by the
definition of open set, N} _; Uy is an open set, as claimed.
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Theorem 3-2 (continued)

Theorem 3-2. The open sets satisfy:
(a) If {U1, Us,..., Uy} is a finite collection of open sets, then
Mi—1 Uk is an open set.
(b) If {Uy} is any collection (finite, infinite, countable, or
uncountable) of open sets, then U, U, is an open set.

Proof (continued). (b) Let {U,} is any collection of open sets and let

x € UqaU,. Then for some o, we have x € U,. Since U, is open and

x € Uy, then there is §(x) > 0 such that (x — §(x), x + d(x)) C Uy
Then (x — d(x), x + d(x)) C UqUy. That is, by the definition of open set,
Uq U, is an open set, as claimed. ]
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Theorem 3-6

Theorem 3-6. A set is closed if and only if it contains all of its boundary
points.
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Theorem 3-6

Theorem 3-6. A set is closed if and only if it contains all of its boundary
points.

Proof. First, let A be a closed set and let x be a boundary point of A.
ASSUME x & A. Then x € A€ and, since A is closed, A€ is open. So, by
the definition of open set, there is § > 0 such that (x — 0, x + ) C A°. But
then (x — d, x + 0) contains no points of set A itself, CONTRADICTING
the fact that x is a boundary point of A (see the definition of boundary
point). This contradiction shows that the assumption that x ¢ A is false.
That is, every boundary point of closed set A must be an element of A.
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Theorem 3-6

Theorem 3-6. A set is closed if and only if it contains all of its boundary
points.

Proof. First, let A be a closed set and let x be a boundary point of A.
ASSUME x & A. Then x € A€ and, since A is closed, A€ is open. So, by
the definition of open set, there is § > 0 such that (x — 0, x + ) C A°. But
then (x — d, x + 0) contains no points of set A itself, CONTRADICTING
the fact that x is a boundary point of A (see the definition of boundary
point). This contradiction shows that the assumption that x ¢ A is false.
That is, every boundary point of closed set A must be an element of A.

Secondly, suppose A contains all of its boundary points. Let x € A°. Then

x ¢ A so that x is not a boundary point of A. So (by the negation of the

definition of boundary point) there is § > 0 such that (x — d,x + )

contains no points of A. That is, (x — §,x 4+ d) C A°. Since x is an

arbitrary point of A€, then A€ is open and hence, as claimed, A is

closed. O
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Theorem 3-7

Theorem 3-7. For AC R, A is closed.
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Theorem 3-7. A is closed.

Theorem 3-7

Theorem 3-7. For AC R, A is closed.

Proof. Consider A and let x € A°. Since x € A and x is not a boundary
point of A, then (by the negation of the definition of boundary point; see
Note 3.1.H) there is some ¢ > 0 such that (x — d, x 4+ &) contains no

points of A; that is, (x — &, x + ) C A°. (We still need to show that
(x —d,x +6) C A°)
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Theorem 3-7

Theorem 3-7. For AC R, A is closed.

Proof. Consider A and let x € A°. Since x € A and x is not a boundary
point of A, then (by the negation of the definition of boundary point; see
Note 3.1.H) there is some ¢ > 0 such that (x — d, x 4+ &) contains no
points of A; that is, (x — 0, x + ¢) C A°. (We still need to show that
(x — 8, x +08) C A%)

For any y € (x — §,x+9), define &' = min{y — (x =), (x+ ) —y}. Then
(y—0",y+9d) C (x—4x+ ) contains no points of A, and hence y is
not a boundary point of A. Since y is an arbitrary point of (x — §,x + ),
then no points of (x — 4, x + d) are boundary points of A. We now have
that (x — d,x + ) contains no points of A and no boundary points of A,
so that (x — &, x + &) C A°. Since x is an arbitrary point of A°, then (by
the definition of open set) ASis open. That is, Ais closed, as claimed. [
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Theorem 3-8

Theorem 3-8. Let {A;, Az, ...} be a countable collection of nonempty
closed bounded sets of real numbers such that A; O A; for i < j. Then
NA; # @.
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Theorem 3-8

Theorem 3-8. Let {A;, Az, ...} be a countable collection of nonempty
closed bounded sets of real numbers such that A; O A; for i < j. Then
NA; # @.

Proof. Since each A; is nonempty, then there is some a; € A; for each

i € N. Since A; D A; for i < j by hypothesis, the all sets are subsets of A;
and sequence {a;} forms a subset of A;. Since A; is bounded, then
sequence {a;} is bounded. By Theorem 2-14 there is a subsequence {a;, }
of {aj} that is convergent. Let {a; } — p.
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Theorem 3-8

Theorem 3-8. Let {A;, Az, ...} be a countable collection of nonempty
closed bounded sets of real numbers such that A; O A; for i < j. Then
NA; # @.

Proof. Since each A; is nonempty, then there is some a; € A; for each

i € N. Since A; D A; for i < j by hypothesis, the all sets are subsets of A;
and sequence {a;} forms a subset of A;. Since A; is bounded, then
sequence {a;} is bounded. By Theorem 2-14 there is a subsequence {a;, }
of {aj} that is convergent. Let {a; } — p.

Let € > 0. Since {a;, } — p then, by the definition of limit of a sequence,
there is N € R such that for all k > N we have |p —a; | < ¢, or

aj, € (p—¢,p+¢€). Since the sets are nested, then for any

aj, € (p—¢e,p+¢), we have a;, € A for all i < ix. Therefore

(p — e, p+ €) contains a point of every A;.
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Theorem 3-8 (continued)

Theorem 3-8. Let {A;, Ay, ...} be a countable collection of nonempty
closed bounded sets of real numbers such that A; D A; for i < j. Then
NA; # @.

Proof (continued). If p & A; then (p — ¢, p + ¢) contains both a point in
A; and a point not in A; (the point not in A; is p in this case); that is, p is
a limit point of A;. So for every i € N, either p € A; or p is a limit point
of A;. Since each A; is closed then, by Corollary 3-6(a), then each A;
contains its limit points. Therefore, we must have p € A; for all i € N.
Hence, p € NA; and NA; # &, as claimed. O
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Corollary 3-8. Empty infinite intersection of nested closed sets

Corollary 3-8

Corollary 3-8. Let {A1, Ay, ...} be a countable collection of closed
bounded sets of real numbers such that A; D A; if i <j. f N72,A; =@
then ﬂ,N:;LAi = & for some N € N.
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Corollary 3-8. Empty infinite intersection of nested closed sets

Corollary 3-8

Corollary 3-8. Let {A1, Ay, ...} be a countable collection of closed
bounded sets of real numbers such that A; D A; if i <j. f N72,A; =@
then ﬂ,N:;LAi = & for some N € N.

Proof. By Theorem 3-8, if all the sets are nonempty then N2, A; # @.
Since by hypothesis N%°; A; = &, then there must be some Ay = @. (In
fact, because the sets are nested, we must then have A;& for all i > N.)
So we have ﬂ,’-\’:lA,- = &, as claimed. ]
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Theorem 3-10

Theorem 3-10. Heine-Borel Theorem.
If Ais a closed and bounded set of real numbers, then A is compact.
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Theorem 3-10

Theorem 3-10. Heine-Borel Theorem.
If Ais a closed and bounded set of real numbers, then A is compact.

Proof. Let A be a closed and bounded set of real numbers and {/,} an
open cover of A. By Theorem 3-9 (The Lindelof Property), there is a
countable open subcover of A, {/i, b,...}. Define the sets J, = U_, /; for
each n € N. Each J, is open by Theorem 3-2(b). This is an increasing
sequence of sets; that is, J, C Jp41 for each n € N. Since

U 1 Jp = U2 1, then {J1, Jo, ...} is also a countable open cover of A.
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Theorem 3-10

Theorem 3-10. Heine-Borel Theorem.
If Ais a closed and bounded set of real numbers, then A is compact.

Proof. Let A be a closed and bounded set of real numbers and {/,} an
open cover of A. By Theorem 3-9 (The Lindelof Property), there is a
countable open subcover of A, {/i, b,...}. Define the sets J, = U_, /; for
each n € N. Each J, is open by Theorem 3-2(b). This is an increasing
sequence of sets; that is, J, C Jp41 for each n € N. Since

U 1 Jp = U2 1, then {J1, Jo, ...} is also a countable open cover of A.
Next, define K, = A\ J, for each n € N. This is a decreasing sequence of
sets; that is, K, D Kj11 for each n € N. Since A is closed and J, is open,
then each Kj, is closed by Exercise 3.1.6(a). Since {J1,Js,...} is a cover
of A, then A\ (U2;J;) = @. By DeMorgan'’s Laws (Corollary 1-1 and
Exercise 1.1.8):

G = A\ (UZ1Ji) = UZ1(A\ Ji) = N2 K.
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Theorem 3-10

Theorem 3-10. Heine-Borel Theorem.
If Ais a closed and bounded set of real numbers, then A is compact.

Proof (continued). By Corollary 3-8 as applied to sets {Ki, Ko, ...},
there is n € N such that ﬂf\’le,- = @. We now have

o= NK = (AN ) = A\ (UL0) = AN (W)

Therefore, {h, bk, ..., Iy} is a finite open cover of A. Hence, by definition,
A is compact as claimed. O
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Theorem 3-11

Theorem 3-11. A set that is compact is closed and bounded.
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Theorem 3-11

Theorem 3-11. A set that is compact is closed and bounded.

Proof. The contrapositive of the claim is: A set that is not closed and
bounded, is not compact.
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Theorem 3-11

Theorem 3-11. A set that is compact is closed and bounded.

Proof. The contrapositive of the claim is: A set that is not closed and
bounded, is not compact.

Suppose set of real numbers A is not bounded. Let I, = (—n, n) for all

n € N. Then {/,} is an open cover of A, but there is no finite subcover.

That is, A is no compact.
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Theorem 3-11

Theorem 3-11. A set that is compact is closed and bounded.

Proof. The contrapositive of the claim is: A set that is not closed and
bounded, is not compact.

Suppose set of real numbers A is not bounded. Let I, = (—n, n) for all
n € N. Then {/,} is an open cover of A, but there is no finite subcover.
That is, A is no compact.

Suppose A is not closed. Then by Corollary 3-6(a) there is at least one
limit point of A, say x, such that x ¢ A. Let

ln = (—00,x —1/n)U(x +1/n,00) for n € N.

Then {/,} is an open cover of A. ASSUME there is a finite subcover of A.
Then there is a largest value of the index, say N, in the subcover. The
union of the elements of the subcover is (—oo,x — 1/N)U (x + 1/N, 00).
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Theorem 3-11 (continued)

Theorem 3-11. A set that is compact is closed and bounded.

Proof (continued). With £ = 1/N, the interval
(x—e,x+¢e)=(x—1/N,x+ 1/N) contains an element of A (since x is a
limit point of A), but this point of A is not in the finite open cover, a
CONTRADICTION to the fact that the finite subcover is a superset of set
A. So the assumption that there is a finite subcover of A is false. That is,
{In} is an open cover of A without any finite subcover. So A is not
compact. This establishes the contrapositive of the claim. []
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Theorem 3-12

Theorem 3-12. A set A C R is compact if and only if every infinite set of
points of A has a limit point in A.
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Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12

Theorem 3-12. A set A C R is compact if and only if every infinite set of
points of A has a limit point in A.

Proof. First, let A be compact with B C A where B is an infinite set.
Since A is compact, then A is bounded by the Heine-Borel Theorem
(Theorem 3-10). Since B C A, then set B is also bounded. Now by the
Bolzano-Weierstrass Theorem (Theorem 2-12), set B has a limit point, say
p.
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Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12

Theorem 3-12. A set A C R is compact if and only if every infinite set of
points of A has a limit point in A.

Proof. First, let A be compact with B C A where B is an infinite set.
Since A is compact, then A is bounded by the Heine-Borel Theorem
(Theorem 3-10). Since B C A, then set B is also bounded. Now by the
Bolzano-Weierstrass Theorem (Theorem 2-12), set B has a limit point, say
p. Let € > 0. Then by the definition of limit point, (p — &, p 4 €) contains
a point of B. But B C A, so (p — &, p + ¢) contains a point of A and so p
is also a limit point of A. Since A is compact, then it is closed (by
Theorem 3-11) and so contains its limit points (by Corollary 3-6). That is,
set B has a limit a limit point in set A, as claimed.
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Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12

Theorem 3-12. A set A C R is compact if and only if every infinite set of
points of A has a limit point in A.

Proof. First, let A be compact with B C A where B is an infinite set.
Since A is compact, then A is bounded by the Heine-Borel Theorem
(Theorem 3-10). Since B C A, then set B is also bounded. Now by the
Bolzano-Weierstrass Theorem (Theorem 2-12), set B has a limit point, say
p. Let € > 0. Then by the definition of limit point, (p — &, p 4 €) contains
a point of B. But B C A, so (p — &, p + ¢) contains a point of A and so p
is also a limit point of A. Since A is compact, then it is closed (by
Theorem 3-11) and so contains its limit points (by Corollary 3-6). That is,
set B has a limit a limit point in set A, as claimed.

Now we need to prove that if every infinite set of points in A has a limit
point in A, then A is compact. We prove the contrapositive: If A is not
compact, then there is an infinite set of points in A that does not have a
limit point in A.
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Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12 (continued 1)

Proof (continued). Let set A not be compact. Then by Theorem 3-11,
either A is not closed or A is not bounded. If A not not closed then (by
Corollary 3-6(a)) there is a limit point of A that is not in A, say point x.
By the definition of limit point, the interval (x — 1/n,x + 1/n) contains
some point of A distinct from x for each n € N.

Analysis 1 December 6, 2023 17 / 21



Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12 (continued 1)

Proof (continued). Let set A not be compact. Then by Theorem 3-11,
either A is not closed or A is not bounded. If A not not closed then (by
Corollary 3-6(a)) there is a limit point of A that is not in A, say point x.
By the definition of limit point, the interval (x — 1/n,x + 1/n) contains
some point of A distinct from x for each n € N. Choose one such point
from each interval and denote it as x,. ASSUME {xi, x2, ...} contains
only finitely many different points. Then there is some x; that is closest to
x, say xy. With ¢’ = |x — xp/, the interval (x — &', x 4 &’) contains no
points of A, CONTRADICTING the fast that x is a limit point of A. So
the assumption that {xi, x2, ...} contains only finitely many different
points is false, and so B = {x1, x2, ..., } contains infinitely many points of
A.
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Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12 (continued 1)

Proof (continued). Let set A not be compact. Then by Theorem 3-11,
either A is not closed or A is not bounded. If A not not closed then (by
Corollary 3-6(a)) there is a limit point of A that is not in A, say point x.
By the definition of limit point, the interval (x — 1/n,x + 1/n) contains
some point of A distinct from x for each n € N. Choose one such point
from each interval and denote it as x,. ASSUME {xi, x2, ...} contains
only finitely many different points. Then there is some x; that is closest to
x, say xy. With ¢’ = |x — xp/, the interval (x — &', x 4 &’) contains no
points of A, CONTRADICTING the fast that x is a limit point of A. So
the assumption that {xi, x2, ...} contains only finitely many different
points is false, and so B = {x1, x2, ..., } contains infinitely many points of
A. Since 1/n can be made arbitrarily small (by the Archimedean Principle,
Theorem 1-18), then the sequence {x;} — x and the set {xi, x2, ...} has
only one limit point, namely x. That is, B = {x1, x2, ...} is an infinite set
of points of A that does not have a limit point in A, as needed.
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Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12 (continued 2)

Theorem 3-12. A set A C R is compact if and only if every infinite set of
points of A has a limit point in A.

Proof (continued). Finally, let set A not be bounded. Then for each

n € N there is some x, is A such that x, € [—n, n]. Define

B = {x, | n € N}, so that B is an infinite set of elements of A. Then for
any x € R and for any given € > 0, the interval (x — &, x + €) contains no
xp for n > max{|x — ¢, |x 4+ ¢|}. Thatis, (x — &, x + €) contains only
finitely many points of B. So there are no limit points of infinite set B and
hence there can be no limit point of B in set A. That is, B = {x1, x2, ...}
is an infinite set of points of A that does not have a limit point in A, as
needed. O

Analysis 1 December 6, 2023 18 / 21



Theorem 3-14

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.
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Theorem 3-14

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.

Proof. Let A be a set of real numbers with more than one element, which
is not an interval. By negating the definition of interval, we have that A is
not an interval if there are r,s € A with r < s such that there is a t with
r<t<sandt¢gA. Let U= (—o0,t)and V = (t,o0). Then U and V
are disjoint open sets with r € UN A= (—o0,t) NA # &,
seVNA=(t,oo)NA#J, and

[UNAJU[V N A] = [(—c0, t) N AU [(t,00) N A] = A.

Hence, by definition, A is not connected. That is, if A is a set of real
numbers with more than one element which is not an interval then A is
not connected. In other words (i.e., the contrapositive of this statement) if
A is a connected set with more than one element then A is an interval.
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Theorem 3-14 (continued 1)

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.

Proof (continued). Now suppose that A is an interval (all intervals
contain at least two elements). ASSUME A is not connected. Then there
are U and V disjoint open sets such that (i) AC UU V and (ii)

UNA# @ and VNA# . Since U is an open set then, by Theorem 3-5,
there is a countable collection of disjoint open intervals {U; | i =1,2,...}
with U = U2, U;. Similarly, there is a countable collection of disjoint open
intervals {V; | i =1,2,...} with V =UX, V.
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Theorem 3-14 (continued 1)

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.

Proof (continued). Now suppose that A is an interval (all intervals
contain at least two elements). ASSUME A is not connected. Then there
are U and V disjoint open sets such that (i) AC UU V and (ii)

UNA# @ and VNA# . Since U is an open set then, by Theorem 3-5,
there is a countable collection of disjoint open intervals {U; | i =1,2,...}
with U = U2, U;. Similarly, there is a countable collection of disjoint open
intervals {V; | i =1,2,...} with V = U, V;. Suppose a€ UN A and

be VNA. Then ac U for some U;, and b € Vj for some V. Without
loss of generality, suppose a < b. Let Vi = («, 3). See Kirkwood's Figure
3-2 below.
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connected if and only if it is an interval.
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Theorem 3-14 (continued 2)

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.

Proof (continued). Next, we show that « is in neither U nor V. First, if
a were in U then (since U is open) there would be 6 > 0 such that

(e — 0,0+ 9) C U. But since Vi = (v, 3) then we would have

(o — 0,0+ 9) N Vi # &, from which we would have UN V # &; this
contradicts the disjointness of U and V. So o ¢ U.
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Theorem 3-14 (continued 2)

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.

Proof (continued). Next, we show that « is in neither U nor V. First, if
a were in U then (since U is open) there would be 6 > 0 such that

(e — 0,0+ 9) C U. But since Vi = (v, 3) then we would have

(o — 0,0+ 9) N Vi # &, from which we would have UN V # &; this
contradicts the disjointness of U and V. So o ¢ U. Similarly if & € V
then, because a & Vj, there must be some V; with ¢ # k containing «
and, since V; is open, we can conclude that Vi NV, £ @. The contradicts
the disjointness of the V;, so o & V.
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Theorem 3-14 (continued 2)

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.

Proof (continued). Next, we show that « is in neither U nor V. First, if
a were in U then (since U is open) there would be 6 > 0 such that

(e — 0,0+ 9) C U. But since Vi = (v, 3) then we would have

(o — 0,0+ 9) N Vi # &, from which we would have UN V # &; this
contradicts the disjointness of U and V. So o ¢ U. Similarly if & € V
then, because a & Vj, there must be some V; with ¢ # k containing «
and, since V; is open, we can conclude that Vi NV, £ @. The contradicts
the disjointness of the V;, so o & V.

Now a<a<b,ac A be A but a¢g A Thatis, A is not an interval.
But this CONTRADICTS the hypothesis that A is an interval. So the
assumption that A is not connected must be false, and A is connected, as
needed. We have now shown that if A is an interval, then A is

connected. O
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