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3-1. Topology of the Real Numbers—Proofs of Theorems
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Theorem 3-1. Open intervals

Theorem 3-1

Theorem 3-1. The intervals (a, b), (a,∞), and (−∞, a) are open sets.

Proof. For interval U = (a, b), let x ∈ (a, b). Then a < x < b. Define
δ(x) = min{x − a, b − x} (see Kirkwood’s Figure 3-1 below). Then
a = a + x − x = x − (x − a) ≤ x − δ(x) (since δ(x) ≤ x − a or
−δ(x) ≥ −(x − a) or −(x − a) ≤ −δ(x)), and (since δ(x) ≤ b − x)
x + δ(x) ≤ x + (b − x) = b, so that a ≤ x − δ(x) < x + δ(x) < b.
Therefore (x − δ(x), x + δ(x)) ⊂ (a, b) = U and, by the definition of open
set, (a, b) is open.
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Theorem 3-1. Open intervals

Theorem 3-1 (continued)

Theorem 3-1. The intervals (a, b), (a,∞), and (−∞, a) are open sets.

Proof (continued). For interval U = (a,∞), let x ∈ (a,∞). Then a < x .
Define δ(x) = x − a. Then a = a + x − x = x − (x − a) = x − δ(x), and
x + δ(x) = x + (x − a) = 2x − a < ∞, so that
a = x − δ(x) < x + δ(x) < ∞. Therefore
(x − δ(x), x + δ(x)) ⊂ (a,∞) = U and, by the definition of open set,
(a,∞) is open.

For interval U = (−∞, a), let x ∈ (−∞, a). Then x < a. Define
δ(x) = a− x . Then −∞ < 2x − a = x − (a− x) = x − δ(x) and
x + δ(x) = x + (a− x) = a, so that −∞ < x − δ(x) < x + δ(x) = a.
Therefore (x − δ(x), x + δ(x)) ⊂ (−∞, a) = U and, by the definition of
open set, (−∞, a) is open.
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Theorem 3-2. Open unions and intersections of open sets

Theorem 3-2

Theorem 3-2. The open sets satisfy:

(a) If {U1,U2, . . . ,Un} is a finite collection of open sets, then
∩n

k=1Uk is an open set.

(b) If {Uα} is any collection (finite, infinite, countable, or
uncountable) of open sets, then ∪αUα is an open set.

Proof. (a) Let U1,U2, . . . ,Un be open sets and let x ∈ ∩n
k=1Uk . Since Uk

is open and x ∈ Uk , then there is δk(x) > 0 such that
(x − δk(x), x + δk(x)) ⊂ Uk , and this holds for every k = 1, 2, . . . , n.
Define δ(x) = min{δ1(x), δ2(x), . . . , δn(x)} = min1≤k≤n{δk(x)}. Notice
that since δ(x) is a minimum over a finite set of positive numbers so that
δ(x) is positive (we could not do this for an infinite collection of δk(x)’s).

Then (x − δ(x), x + δ(x)) ⊂ (x − δk(x), x + δk(x)) ⊂ Uk for each
k = 1, 2, . . . , n. Therefore (x − δ(x), x + δ(x)) ⊂ ∩n

k=1Uk . That is, by the
definition of open set, ∩n

k=1Uk is an open set, as claimed.
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Theorem 3-2. Open unions and intersections of open sets

Theorem 3-2 (continued)

Theorem 3-2. The open sets satisfy:

(a) If {U1,U2, . . . ,Un} is a finite collection of open sets, then
∩n

k=1Uk is an open set.

(b) If {Uα} is any collection (finite, infinite, countable, or
uncountable) of open sets, then ∪αUα is an open set.

Proof (continued). (b) Let {Uα} is any collection of open sets and let
x ∈ ∪αUα. Then for some α′, we have x ∈ Uα′ . Since Uα′ is open and
x ∈ Uα′ , then there is δ(x) > 0 such that (x − δ(x), x + δ(x)) ⊂ Uα′ .
Then (x − δ(x), x + δ(x)) ⊂ ∪αUα. That is, by the definition of open set,
∪αUα is an open set, as claimed.
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Theorem 3-6. Closed sets in terms of boundary points

Theorem 3-6

Theorem 3-6. A set is closed if and only if it contains all of its boundary
points.

Proof. First, let A be a closed set and let x be a boundary point of A.
ASSUME x 6∈ A. Then x ∈ Ac and, since A is closed, Ac is open. So, by
the definition of open set, there is δ > 0 such that (x − δ, x + δ) ⊂ Ac . But
then (x − δ, x + δ) contains no points of set A itself, CONTRADICTING
the fact that x is a boundary point of A (see the definition of boundary
point). This contradiction shows that the assumption that x 6∈ A is false.
That is, every boundary point of closed set A must be an element of A.

Secondly, suppose A contains all of its boundary points. Let x ∈ Ac . Then
x 6∈ A so that x is not a boundary point of A. So (by the negation of the
definition of boundary point) there is δ > 0 such that (x − δ, x + δ)
contains no points of A. That is, (x − δ, x + δ) ⊂ Ac . Since x is an
arbitrary point of Ac , then Ac is open and hence, as claimed, A is
closed.
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Theorem 3-7. A is closed.

Theorem 3-7

Theorem 3-7. For A ⊂ R, A is closed.

Proof. Consider A
c

and let x ∈ A
c
. Since x 6∈ A and x is not a boundary

point of A, then (by the negation of the definition of boundary point; see
Note 3.1.H) there is some δ > 0 such that (x − δ, x + δ) contains no
points of A; that is, (x − δ, x + δ) ⊂ Ac . (We still need to show that
(x − δ, x + δ) ⊂ A

c
.)

For any y ∈ (x − δ, x + δ), define δ′ = min{y − (x − δ), (x + δ)− y}. Then
(y − δ′, y + δ′) ⊂ (x − δ, x + δ) contains no points of A, and hence y is
not a boundary point of A. Since y is an arbitrary point of (x − δ, x + δ),
then no points of (x − δ, x + δ) are boundary points of A. We now have
that (x − δ, x + δ) contains no points of A and no boundary points of A,
so that (x − δ, x + δ) ⊂ A

c
. Since x is an arbitrary point of A

c
, then (by

the definition of open set) A
c

is open. That is, A is closed, as claimed.
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Theorem 3-8. Intersection of nested closed sets

Theorem 3-8

Theorem 3-8. Let {A1,A2, . . .} be a countable collection of nonempty
closed bounded sets of real numbers such that Ai ⊃ Aj for i ≤ j . Then
∩Ai 6= ∅.

Proof. Since each Ai is nonempty, then there is some ai ∈ Ai for each
i ∈ N. Since Ai ⊃ Aj for i ≤ j by hypothesis, the all sets are subsets of A1

and sequence {ai} forms a subset of A1. Since A1 is bounded, then
sequence {ai} is bounded. By Theorem 2-14 there is a subsequence {aik}
of {ai} that is convergent. Let {aik} → p.

Let ε > 0. Since {aik} → p then, by the definition of limit of a sequence,
there is N ∈ R such that for all k > N we have |p − aik | < ε, or
aik ∈ (p − ε, p + ε). Since the sets are nested, then for any
aik ∈ (p − ε, p + ε), we have aik ∈ Ai for all i ≤ ik . Therefore
(p − ε, p + ε) contains a point of every Ai .
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Theorem 3-8. Intersection of nested closed sets

Theorem 3-8 (continued)

Theorem 3-8. Let {A1,A2, . . .} be a countable collection of nonempty
closed bounded sets of real numbers such that Ai ⊃ Aj for i ≤ j . Then
∩Ai 6= ∅.

Proof (continued). If p 6∈ Ai then (p − ε, p + ε) contains both a point in
Ai and a point not in Ai (the point not in Ai is p in this case); that is, p is
a limit point of Ai . So for every i ∈ N, either p ∈ Ai or p is a limit point
of Ai . Since each Ai is closed then, by Corollary 3-6(a), then each Ai

contains its limit points. Therefore, we must have p ∈ Ai for all i ∈ N.
Hence, p ∈ ∩Ai and ∩Ai 6= ∅, as claimed.
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Corollary 3-8. Empty infinite intersection of nested closed sets

Corollary 3-8

Corollary 3-8. Let {A1,A2, . . .} be a countable collection of closed
bounded sets of real numbers such that Ai ⊃ Aj if i < j . If ∩∞i=1Ai = ∅
then ∩N

i=1Ai = ∅ for some N ∈ N.

Proof. By Theorem 3-8, if all the sets are nonempty then ∩∞i=1Ai 6= ∅.
Since by hypothesis ∩∞i=1Ai = ∅, then there must be some AN = ∅. (In
fact, because the sets are nested, we must then have Ai∅ for all i ≥ N.)
So we have ∩N

i=1Ai = ∅, as claimed.
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Theorem 3-10. Heine-Borel Theorem

Theorem 3-10

Theorem 3-10. Heine-Borel Theorem.
If A is a closed and bounded set of real numbers, then A is compact.

Proof. Let A be a closed and bounded set of real numbers and {Iα} an
open cover of A. By Theorem 3-9 (The Lindelöf Property), there is a
countable open subcover of A, {I1, I2, . . .}. Define the sets Jn = ∪n

i=1Ii for
each n ∈ N. Each Jn is open by Theorem 3-2(b). This is an increasing
sequence of sets; that is, Jn ⊂ Jn+1 for each n ∈ N. Since
∪∞n=1Jn = ∪∞n=1In then {J1, J2, . . .} is also a countable open cover of A.

Next, define Kn = A \ Jn for each n ∈ N. This is a decreasing sequence of
sets; that is, Kn ⊃ Kn+1 for each n ∈ N. Since A is closed and Jn is open,
then each Kn is closed by Exercise 3.1.6(a). Since {J1, J2, . . .} is a cover
of A, then A \ (∪∞i=1Ji ) = ∅. By DeMorgan’s Laws (Corollary 1-1 and
Exercise 1.1.8):

∅ = A \ (∪∞i=1Ji ) = ∪∞i=1(A \ Ji ) = ∩∞i=1Ki .
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Theorem 3-10. Heine-Borel Theorem

Theorem 3-10

Theorem 3-10. Heine-Borel Theorem.
If A is a closed and bounded set of real numbers, then A is compact.

Proof (continued). By Corollary 3-8 as applied to sets {K1,K2, . . .},
there is n ∈ N such that ∩N
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∅ = ∩N
i=1Ki = ∩N

i=1(A \ Ji ) = A \
(
∪N

i=1Ji

)
= A \

(
∪N
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)
.

Therefore, {I1, I2, . . . , IN} is a finite open cover of A. Hence, by definition,
A is compact as claimed.
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Theorem 3-11. Converse of the Heine-Borel Theorem

Theorem 3-11

Theorem 3-11. A set that is compact is closed and bounded.

Proof. The contrapositive of the claim is: A set that is not closed and
bounded, is not compact.

Suppose set of real numbers A is not bounded. Let In = (−n, n) for all
n ∈ N. Then {In} is an open cover of A, but there is no finite subcover.
That is, A is no compact.

Suppose A is not closed. Then by Corollary 3-6(a) there is at least one
limit point of A, say x , such that x 6∈ A. Let

In = (−∞, x − 1/n) ∪ (x + 1/n,∞) for n ∈ N.

Then {In} is an open cover of A. ASSUME there is a finite subcover of A.
Then there is a largest value of the index, say N, in the subcover. The
union of the elements of the subcover is (−∞, x − 1/N) ∪ (x + 1/N,∞).
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Theorem 3-11. Converse of the Heine-Borel Theorem

Theorem 3-11 (continued)

Theorem 3-11. A set that is compact is closed and bounded.

Proof (continued). With ε = 1/N, the interval
(x − ε, x + ε) = (x − 1/N, x + 1/N) contains an element of A (since x is a
limit point of A), but this point of A is not in the finite open cover, a
CONTRADICTION to the fact that the finite subcover is a superset of set
A. So the assumption that there is a finite subcover of A is false. That is,
{In} is an open cover of A without any finite subcover. So A is not
compact. This establishes the contrapositive of the claim.
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Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12

Theorem 3-12. A set A ⊂ R is compact if and only if every infinite set of
points of A has a limit point in A.

Proof. First, let A be compact with B ⊂ A where B is an infinite set.
Since A is compact, then A is bounded by the Heine-Borel Theorem
(Theorem 3-10). Since B ⊂ A, then set B is also bounded. Now by the
Bolzano-Weierstrass Theorem (Theorem 2-12), set B has a limit point, say
p.

Let ε > 0. Then by the definition of limit point, (p − ε, p + ε) contains
a point of B. But B ⊂ A, so (p − ε, p + ε) contains a point of A and so p
is also a limit point of A. Since A is compact, then it is closed (by
Theorem 3-11) and so contains its limit points (by Corollary 3-6). That is,
set B has a limit a limit point in set A, as claimed.

Now we need to prove that if every infinite set of points in A has a limit
point in A, then A is compact. We prove the contrapositive: If A is not
compact, then there is an infinite set of points in A that does not have a
limit point in A.

() Analysis 1 December 6, 2023 16 / 21



Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12

Theorem 3-12. A set A ⊂ R is compact if and only if every infinite set of
points of A has a limit point in A.

Proof. First, let A be compact with B ⊂ A where B is an infinite set.
Since A is compact, then A is bounded by the Heine-Borel Theorem
(Theorem 3-10). Since B ⊂ A, then set B is also bounded. Now by the
Bolzano-Weierstrass Theorem (Theorem 2-12), set B has a limit point, say
p. Let ε > 0. Then by the definition of limit point, (p − ε, p + ε) contains
a point of B. But B ⊂ A, so (p − ε, p + ε) contains a point of A and so p
is also a limit point of A. Since A is compact, then it is closed (by
Theorem 3-11) and so contains its limit points (by Corollary 3-6). That is,
set B has a limit a limit point in set A, as claimed.

Now we need to prove that if every infinite set of points in A has a limit
point in A, then A is compact. We prove the contrapositive: If A is not
compact, then there is an infinite set of points in A that does not have a
limit point in A.

() Analysis 1 December 6, 2023 16 / 21



Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12

Theorem 3-12. A set A ⊂ R is compact if and only if every infinite set of
points of A has a limit point in A.

Proof. First, let A be compact with B ⊂ A where B is an infinite set.
Since A is compact, then A is bounded by the Heine-Borel Theorem
(Theorem 3-10). Since B ⊂ A, then set B is also bounded. Now by the
Bolzano-Weierstrass Theorem (Theorem 2-12), set B has a limit point, say
p. Let ε > 0. Then by the definition of limit point, (p − ε, p + ε) contains
a point of B. But B ⊂ A, so (p − ε, p + ε) contains a point of A and so p
is also a limit point of A. Since A is compact, then it is closed (by
Theorem 3-11) and so contains its limit points (by Corollary 3-6). That is,
set B has a limit a limit point in set A, as claimed.

Now we need to prove that if every infinite set of points in A has a limit
point in A, then A is compact. We prove the contrapositive: If A is not
compact, then there is an infinite set of points in A that does not have a
limit point in A.

() Analysis 1 December 6, 2023 16 / 21



Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12

Theorem 3-12. A set A ⊂ R is compact if and only if every infinite set of
points of A has a limit point in A.

Proof. First, let A be compact with B ⊂ A where B is an infinite set.
Since A is compact, then A is bounded by the Heine-Borel Theorem
(Theorem 3-10). Since B ⊂ A, then set B is also bounded. Now by the
Bolzano-Weierstrass Theorem (Theorem 2-12), set B has a limit point, say
p. Let ε > 0. Then by the definition of limit point, (p − ε, p + ε) contains
a point of B. But B ⊂ A, so (p − ε, p + ε) contains a point of A and so p
is also a limit point of A. Since A is compact, then it is closed (by
Theorem 3-11) and so contains its limit points (by Corollary 3-6). That is,
set B has a limit a limit point in set A, as claimed.

Now we need to prove that if every infinite set of points in A has a limit
point in A, then A is compact. We prove the contrapositive: If A is not
compact, then there is an infinite set of points in A that does not have a
limit point in A.

() Analysis 1 December 6, 2023 16 / 21



Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12 (continued 1)

Proof (continued). Let set A not be compact. Then by Theorem 3-11,
either A is not closed or A is not bounded. If A not not closed then (by
Corollary 3-6(a)) there is a limit point of A that is not in A, say point x .
By the definition of limit point, the interval (x − 1/n, x + 1/n) contains
some point of A distinct from x for each n ∈ N. Choose one such point
from each interval and denote it as xn. ASSUME {x1, x2, . . .} contains
only finitely many different points. Then there is some xi that is closest to
x , say xN . With ε′ = |x − xN |, the interval (x − ε′, x + ε′) contains no
points of A, CONTRADICTING the fast that x is a limit point of A. So
the assumption that {x1, x2, . . .} contains only finitely many different
points is false, and so B = {x1, x2, . . . , } contains infinitely many points of
A.

Since 1/n can be made arbitrarily small (by the Archimedean Principle,
Theorem 1-18), then the sequence {xi} → x and the set {x1, x2, . . .} has
only one limit point, namely x . That is, B = {x1, x2, . . .} is an infinite set
of points of A that does not have a limit point in A, as needed.
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Theorem 3-12. Classification of compact sets with infinite subsets

Theorem 3-12 (continued 2)

Theorem 3-12. A set A ⊂ R is compact if and only if every infinite set of
points of A has a limit point in A.

Proof (continued). Finally, let set A not be bounded. Then for each
n ∈ N there is some xn is A such that xn 6∈ [−n, n]. Define
B = {xn | n ∈ N}, so that B is an infinite set of elements of A. Then for
any x ∈ R and for any given ε > 0, the interval (x − ε, x + ε) contains no
xn for n > max{|x − ε|, |x + ε|}. That is, (x − ε, x + ε) contains only
finitely many points of B. So there are no limit points of infinite set B and
hence there can be no limit point of B in set A. That is, B = {x1, x2, . . .}
is an infinite set of points of A that does not have a limit point in A, as
needed.
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Theorem 3-14. Connected sets of real numbers

Theorem 3-14

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.

Proof. Let A be a set of real numbers with more than one element, which
is not an interval. By negating the definition of interval, we have that A is
not an interval if there are r , s ∈ A with r < s such that there is a t with
r < t < s and t 6∈ A. Let U = (−∞, t) and V = (t,∞). Then U and V
are disjoint open sets with r ∈ U ∩ A = (−∞, t) ∩ A 6= ∅,
s ∈ V ∩ A = (t,∞) ∩ A 6= ∅, and

[U ∩ A] ∪ [V ∩ A] = [(−∞, t) ∩ A] ∪ [(t,∞) ∩ A] = A.

Hence, by definition, A is not connected. That is, if A is a set of real
numbers with more than one element which is not an interval then A is
not connected. In other words (i.e., the contrapositive of this statement) if
A is a connected set with more than one element then A is an interval.
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Theorem 3-14. Connected sets of real numbers

Theorem 3-14 (continued 1)

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.

Proof (continued). Now suppose that A is an interval (all intervals
contain at least two elements). ASSUME A is not connected. Then there
are U and V disjoint open sets such that (i) A ⊂ U ∪ V and (ii)
U ∩ A 6= ∅ and V ∩ A 6= ∅. Since U is an open set then, by Theorem 3-5,
there is a countable collection of disjoint open intervals {Ui | i = 1, 2, . . .}
with U = ∪∞i=1Ui . Similarly, there is a countable collection of disjoint open
intervals {Vi | i = 1, 2, . . .} with V = ∪∞i=1Vi . Suppose a ∈ U ∩ A and
b ∈ V ∩ A. Then a ∈ Uj for some Uj , and b ∈ Vk for some Vk . Without
loss of generality, suppose a < b. Let Vk = (α, β). See Kirkwood’s Figure
3-2 below.
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Theorem 3-14. Connected sets of real numbers

Theorem 3-14 (continued 2)

Theorem 3-14. A set of real numbers with more than one element is
connected if and only if it is an interval.

Proof (continued). Next, we show that α is in neither U nor V . First, if
α were in U then (since U is open) there would be δ > 0 such that
(α− δ, α + δ) ⊂ U. But since Vk = (α, β) then we would have
(α− δ, α + δ) ∩ Vk 6= ∅, from which we would have U ∩ V 6= ∅; this
contradicts the disjointness of U and V . So α 6∈ U. Similarly if α ∈ V
then, because α 6∈ Vk , there must be some V` with ` 6= k containing α
and, since V` is open, we can conclude that Vk ∩ V` 6= ∅. The contradicts
the disjointness of the Vi , so α 6∈ V .

Now a < α < b, a ∈ A, b ∈ A, but α 6∈ A. That is, A is not an interval.
But this CONTRADICTS the hypothesis that A is an interval. So the
assumption that A is not connected must be false, and A is connected, as
needed. We have now shown that if A is an interval, then A is
connected.
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