Theorem 1.4.3 (continued 2)

Proof (continued).

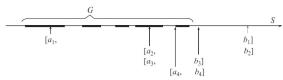


Figure 1.4.3. Proof by bisection: the first few intervals.

So sequence $\{b_i\}_{i=1}^{\infty}$ (of right had endpoints) is Cauchy, since for any positive k, for m, n > N we have $b_m, b_n \in [a_N, b_N]$ and so $|b_m - b_n| \leq b_N - a_N < k$. Since S is Cauchy complete by hypothesis, then $\{b_i\}$ converges and there is $c \in S$ such that $\lim_{i \to \infty} b_i = c$. Similarly, $\{a_i\}$ is Cauchy and for m, n > N we have $a_m, a_n \in [a_N, b_N]$ and $|a_m - a_n| < k$. So $\{a_i\}$ converges as well; say $\lim_{i \to \infty} a_i = c'$. ASSUME $c' \neq c$. Then for |c - c'|/3 = k we have k > 0 and there exists positive integers N_a and N_b such that for all $n > N_a$ we have $|a_n - c'| < |c - c'|/3$, and for all $n > N_b$ we have $|b_n - c| < |c - c'|/3$.

hm 1.4.3. Order Complete \Leftrightarrow Cauchy Complete & Archimedean

Theorem 1.4.3 (continued 4)

Proof (continued). ASSUME c is not an upper bound of G. Then there is $g \in G$ such that g > c. By the hypothesized Archimedean property of S, there is an integer k such that 1/k < g - c. Then by (**), $c \le b_m < c + 1/k < c + (g - c) = g$. But this CONTRADICTS the fact that (by construction) b_m is an upper bound of G. So the assumption that c is not an upper bound of G is false, and hence c is an upper bound of G.

ASSUME c is not the least upper bound of G. Then there is an upper bound B with B < c. By the hypothesized Archimedean property of S, there is an integer k such that 1/k < c - B. Then by (**), $B < c - 1/k < a_n$, so that a_n is an upper bound of G. But this CONTRADICTS the construction of a_n where every a_n is NOT an upper bound of G (recall that $a_i = d_{i-1} = a_{i-1} + b_{i-1})/2$ only when d_i is not an upper bound of G). So the assumption that c is not the least upper bound of G is false, and hence c is the least upper bound of c. Since c is an arbitrary nonempty subset of c, then c is order complete, as claimed. \Box

Thm 1.4.3. Order Complete ⇔ Cauchy Complete & Archimedean

Theorem 1.4.3 (continued 3)

Theorem 1.4.3. An ordered field is order complete if and only if it is Cauchy complete and Archimedean.

Proof (continued). So for all $n > \max\{N_a, N_b\}$ we have we have

$$|c'-c| = |c'-a_n + a_n - b_n + b_n - c| \le |c'-a_n| + |a_n - b_n| + |b_n - c|$$
 $< |c-c'|/3 + |a_n - b_n| + |c-c'|/3$
or
 $|a_n - b_n| > |c' - c|.$ (*)

But as shown above, for any positive k (such as k=|c'-c| there is natural number N such that for all n>N we have $|a_n-b_n|=b_n-a_n< k$. But this CONTRADICTS (*), so the assumption that $c'\neq c$ is false, and hence $\lim_{i\to\infty}a_i=c=\lim_{i\to\infty}b_i$. Since $\{a_i\}$ is a monotone increasing sequence and $\{b_i\}$ is a monotone decreasing sequence, then for all $i\in\mathbb{N}$ we have $a_i\leq c\leq b_i$. So by the definition of limit, for any given positive integer k there is $a_n\in\{a_i\}$ and $b_m\in\{b_i\}$ such that

$$c - 1/k < a_n \le c \le b_m < c + 1/k.$$
 (**)

Analysis 1 February 7, 2024 27 / 4

Theorem 2.1.A. R is Archimede

Theorem 2.1.A

Theorem 2.1.A. The ordered field of real numbers $\mathbb R$ is Archimedean.

Proof. Let \mathbf{x} and \mathbf{y} be positive real numbers. Let $\{x(n)\}$ be in \mathbf{x} . Then $\{x(n)\}$ is positive and, by definition, there are natural numbers M and N so that for n>N we have x(n)>1/M. Define $\{x'(n)\}=\{x(N+1),x(N+2),\ldots\}$ (so that $\{x'(n)\}$ is a subsequence of $\{x(n)\}$). Then $\{x'(n)\}$ is also in \mathbf{x} and is bounded below by the rational number 1/(2M). Let \mathbf{a} be the equivalence class containing $\{a,a,\ldots\}$. Then $\mathbf{a}<\mathbf{x}$, where \mathbf{a} is rational.

Let $\{y(n)\}$ be in \mathbf{y} . Now $\{y(n)\}$ is a Cauchy sequence of rational numbers, so for $\varepsilon=1$ there is natural number N(1) such that for all m,n>N(1) we have $|y(n)-y(m)|<\varepsilon=1$. Then $\{y(n)\}$ is bounded above by the rational number $\max\{y(1),y(2),\ldots,y(N(1)),y(N(1)+1)\}$. Let $b=\max\{y(1),y(2),\ldots,y(N(1)),y(N(1)+1)\}+1$ and let \mathbf{b} be the equivalence class containing $\{b,b,\ldots\}$. Then $\mathbf{y}<\mathbf{b}$, where \mathbf{b} is rational.

Theorem 2.1.A (continued)

Theorem 2.1.A. The ordered field of real numbers \mathbb{R} is Archimedean.

Proof (continued). So for any positive real numbers x and y, we have rational a and b such that 0 < a < x and y < b.

The rational numbers form an Archimedean field by Lemma 1.4.A, so for positive rational numbers a and b, we have that there is a natural number n such that na > b (or na - b is positive). For sequences $\{n, n, \ldots\}$, $\{a, a, \ldots\}$, and $\{b, b, \ldots\}$ we have $\{n, n, \ldots\} \cdot \{a, a, \ldots\} - \{b, b, \ldots\} = \{na - b, na - b, \ldots\}$ is positive. Therefore $\mathbf{na} - \mathbf{b}$ is positive, or $\mathbf{na} > \mathbf{b}$. Similarly $\mathbf{na} < \mathbf{nx}$, and so by transitivity of the ordering we have $\mathbf{y} < \mathbf{b} < \mathbf{na} < \mathbf{nx}$. That is, for any positive real numbers \mathbf{x} and \mathbf{y} , there is a natural number \mathbf{n} such that $\mathbf{nx} > \mathbf{v}$ so that \mathbb{R} is Archimedean, as claimed.

() Analysis 1 February 7, 2024 30

Theorem 2.1.7. $\mathbb R$ is an order complete field

Theorem 2.1.7 (continued 1)

Theorem 2.1.7. The real numbers \mathbb{R} form an order complete ordered field.

Proof (continued). Next, we show that $\{b_n\}_{n=1}^{\infty}$ is Cauchy. Let $\varepsilon>0$ where ε is rational (we consider a rational ε since, by definition, this is what is needed to show a sequence of rationals is Cauchy). Since ordered field $\mathbb Q$ is Archimedean by Lemma 1.4.A, there is natural number $N^*=N^*(\varepsilon)$ such that

$$1/N^* < \varepsilon/3 \tag{2}$$

Since $\{\mathbf{x}(n)\}_{n=1}^{\infty}$ is a Cauchy sequence of real numbers by hypothesis, then with $\varepsilon/\mathbf{3}=(\varepsilon/3,\varepsilon/3,\ldots)$ we have by Note RU.K that there exists natural number $N^{**}=N^{**}(\varepsilon)$ such that for all $m,n>N^{**}$ there are natural numbers M_c and N_c (dependent on m and n) where for all $i>N_c$ we have $\varepsilon/3-|x(n,i)-x(m,i)|>1/M_c$ or

$$|x(n,i) - x(m,i)| < \varepsilon/3 - 1/M_c < \varepsilon/3. \tag{3}$$

Theorem 2.1.7 R is an order complete field

Theorem 2.1.7

Theorem 2.1.7. The real numbers \mathbb{R} form an order complete ordered field.

Proof. We need to show that an arbitrary Cauchy sequence of real numbers converges to a real number. Let $\{\mathbf{x}(n)\}$ be a Cauchy sequence of real numbers. We want to show that this sequence converges to a real number **b**. We do so by finding a Cauchy sequence of rational numbers $\{b_n\}_{n=1}^{\infty}$ and then consider the equivalence class **b** containing $\{b_n\}_{n=1}^{\infty}$.

For each $n \in \mathbb{N}$ let $\{x(n,i)\}_{i=1}^{\infty}$ be a representative of $\mathbf{x}(n)$. Then $\{x(n,i)\}_{i=1}^{\infty}$ is a Cauchy sequence of rational numbers, so there exists natural number N_n such that for all $j,k>N_n$ we have |x(n,j)-x(n,k)|<1/n. Define $b_n=x(n,N_n+1)$, so that

$$|x(n,i) - b_n| < 1/n \text{ for all } i > N_n.$$
 (1)

Then $\{b_n\}$ is a sequence of rational numbers.

Analysis 1 February 7, 2024 31 / 46

Theorem 2.1.7. R is an order complete fie

Theorem 2.1.7 (continued 2)

Theorem 2.1.7. The real numbers \mathbb{R} form an order complete ordered field.

Proof (continued). Let $N = \max\{N^*, N^{**}\}$ and suppose m, n > N. (Notice that N depends on ε and not on m and/or n.) Since $m, n > N^{**}$ then there exist natural numbers M' and N' such that for all i > N' we have by (3) that

$$|x(n,i)-x(m,i)|<\varepsilon/3-1/M'<\varepsilon/3.$$
 (4)

For $i > N_n$ we have by (1) that

$$|b_n - x(n,i)| < 1/n \tag{5}$$

and for $i > N_m$ we have by (1) that

$$|b_m - x(m, i)| < 1/m.$$
 (6)

Theorem 2.1.7 (continued 3)

Proof (continued). So for any $i > \max\{N', N_n, N_m\}$ (notice the value of i depends on m and n) we have

$$|b_{n}-b_{m}| = |b_{n}-x(n,i)+x(n,i)-x(m,i)+x(m,i)-b_{m}|$$

$$\leq |b_{n}-x(n,i)|+|x(n,i)-x(m,i)|+|x(m,i)-b_{m}|$$
by the Triangle Inequality in \mathbb{Q}

$$< 1/n+\varepsilon/3+1/m \text{ by (5) (since } i>N_{n}),$$

$$(4) \text{ (since } m,n>N^{**} \text{ and } i>N'), \text{ and}$$

$$(6) \text{ (since } i>N_{m}), \text{ respectively)}$$

$$< \varepsilon/3+\varepsilon/3+\varepsilon/3=\varepsilon \text{ by (2) since } m,n>N^{*}.$$

That is, for all m, n > N we have $|b_n - b_m| < \varepsilon$. Therefore, $\{b_n\}_{n=1}^{\infty}$ is a Cauchy sequence of rational numbers. Hence, the equivalence class containing $\{b_n\}_{n=1}^{\infty}$, **b**, is a real number.

Analysis 1

Theorem 2.1.7 (continued 5)

Theorem 2.1.7. The real numbers \mathbb{R} form an order complete ordered field.

Proof (continued). That is, for all $n > N(\varepsilon)$ there are natural numbers M and N, namely $N = N_n$ and M = 2M', such that if i > N then $|x(n,i) - b_n| < 1/(2M') = 1/M' - 1/(2M')$ or $1/M' = |x(n,i) - b_n| > 1/(2M')$ and hence $e(i) = |x(n,i) - b_n| > 1/M' = |x(n,i) - b_n| > 1/(2M') = 1/M$. By Note RU.L, this gives (in terms of real numbers) $|\mathbf{x}(n) - \mathbf{b}| < 1/\mathbf{M}' < \varepsilon$. Therefore $\mathbf{x}(n)$ converges to \mathbf{b} .

Since $\mathbf{x}(n)$ is an arbitrary Cauchy sequence of real numbers, then every Cauchy sequence of real numbers converges. That is, \mathbb{R} is Cauchy complete. By Theorem 1.2.A, \mathbb{R} is Archimedean, so by Theorem 1.4.3 we have that \mathbb{R} is order complete, as claimed.

Theorem 2.1.7 R is an order complete field

Theorem 2.1.7 (continued 4)

Theorem 2.1.7. The real numbers \mathbb{R} form an order complete ordered field.

Proof (continued). To prove **b** is the limit of $\{\mathbf{x}(n)\}_{n=1}^{\infty}$, let $\varepsilon > \mathbf{0}$ where ε is a real number (we consider a real ε since this is needed to show convergence of a sequence of real numbers). Let $\{e(i)\}_{i=1}^{\infty}$ be a representative of ε . Since ε is positive, then by the definition of a positive Cauchy sequence of rational numbers. So (by definition) there are natural numbers M' and N' so that for all i > N' we have e(i) > 1/M'. Consider the constant sequence $\{1/M'\}_{i=1}^{\infty}$ as a representative of real number 1/M'. We now have $1/M' < \varepsilon$.

As above, let $\{x(n,i)\}_{i=1}^{\infty}$ be a representative of $\mathbf{x}(n)$. Let $N(\varepsilon)=2M'$. Then for all $n>N(\varepsilon)$ we have by (1) that there is a natural number N_n such that if $i>N_n$ then $|x(n,i)-b_n|<1/n<1/(2M')$.

·

Theorem 1.3.1. Properties of Embedding ℕ in

Theorem 1.3.1

Theorem 1.3.1. The function $i : \mathbb{N} \cup \{0\} \to S$, where S is an ordered field, satisfies:

- (a) i(n+m)=i(n)+i(m) for all $m,n\in\mathbb{N}\cup\{0\}$,
- (b) i(nm) = i(n)i(m) for all $m, n \in \mathbb{N} \cup \{0\}$, and
- (c) i is one to one on $\mathbb{N} \cup \{0\}$.

Proof. (a) This holds trivially for n = 0. We give an inductive proof on n. Let $m \in \mathbb{N}$ be arbitrary but fixed. For the base case n = 1, we have

$$i(1+m) = \underbrace{1_S + 1_S + \dots + 1_S + 1_S}_{1+m \text{ times}} = 1_S + \underbrace{(1_S + 1_S + \dots + 1_S)}_{m \text{ times}}$$
$$= i(1) + i(m) \text{ by the definition of } i.$$

For the induction hypothesis, suppose for $n = k \ge 1$ we have i(k + m) = i(k) + i(m).

February 7, 2024 35 / 46

February 7, 2024

Theorem 1.3.1 (continued 1)

Theorem 1.3.1. The function $i : \mathbb{N} \cup \{0\} \to S$, where S is an ordered field, satisfies:

(a)
$$i(n+m) = i(n) + i(m)$$
 for all $m, n \in \mathbb{N} \cup \{0\}$.

Proof (continued). Now consider:

$$i((k+1)+m) = i((k+m)+1) = i(k+m+1)$$
 by the base case, where m is replaced with $k+m$

$$= (i(k)+i(m))+1$$
 by the induction hypothesis
$$= (i(k)+1)+i(m)=i(k+1)+i(m)$$
 by the base case where m is replaced with $k+1$.

So the result holds for n=k+1 giving the induction step. Therefore, the claim holds for all $n\in\mathbb{N}$ by mathematical induction and, since $m\in\mathbb{N}$ is arbitrary, i(n+m)=i(n)+i(m) for all $m,n\in\mathbb{N}$, as claimed.

Analysis 1

Theorem 1.3.1 (continued 3)

Theorem 1.3.1. The function $i : \mathbb{N} \cup \{0\} \to S$, where S is an ordered field, satisfies:

(c) *i* is one to one on $\mathbb{N} \cup \{0\}$.

Proof (continued). (c) To show i is one to one, suppose i(m) = i(n) for some $m, n \in \mathbb{N}$ where, WLOG, say n > m. Then

$$i(n) = i(n - m + m) = i(n - m) + i(m) \text{ or } i(n) - i(m) = i(n - m)$$

or (since i(n) = i(m)) $0_S = i(n - m)$. But the only nonnegative integer mapped mapped to 0_S is 0, so that n - m = 0 and n = m. That is, i is one to one on $\mathbb{N} \cup \{0\}$, as claimed.

Theorem 1.3.1. Properties of Embedding $\mathbb N$ in S

Theorem 1.3.1 (continued 2)

Theorem 1.3.1. The function $i : \mathbb{N} \cup \{0\} \to S$, where S is an ordered field, satisfies:

(b)
$$i(nm) = i(n)i(m)$$
 for all $m, n \in \mathbb{N} \cup \{0\}$.

Proof (continued). (b) Again, we give a inductive proof on n. Let $m \in \mathbb{N}$ be arbitrary but fixed. For the base case n = 1, we have $i(1m) = i(m) = 1_S i(m) = i(1)i(m)$. For the inductive hypothesis, suppose for $n = k \ge 1$ we have i(km) = i(k)i(m). Now consider:

$$i((k+1)m) = i(km+m) = i(km) + i(m)$$
 by part (a)
= $i(k)i(m) + i(m)$ by the induction hypothesis
= $i(k+1)i(m)$ by part (a).

So the result holds for n=k+1, giving the induction step . Therefore, the claim holds for all $n \in \mathbb{N}$ by mathematical induction and, since $m \in \mathbb{N}$ is arbitrary, i(nm) = i(n)i(m) for all $m, n \in \mathbb{N}$, as claimed.

Analysis 1

Theorem 2.3.3

Theorem 2.3.B. (Problem 2.3.1) Mapping $i: \mathbb{Q} \to S$ is well-defined. That is, i(p/q) = i(r/s) for p/q = r/s where $p, q, r, s \in \mathbb{Z}$.

Proof. Notice that rational numbers p/q and r/s (where $p,q,r,s\in\mathbb{Z}$ with $q\neq 0$ and $s\neq 0$) are equal if and only if ps=qr. If r=0 then ps=qr=q(0)=0 so that p=0 since $s\neq 0$. Then p/q=r/s=0 and $i(p/q)=i(r/s)=0_S$. So we assume WLOG that $r\neq 0$. With p/q=r/s we have

$$i(p/q) = r((p/q)(1_S)) = i((p/q)(r/s)(s/r))$$
 since $r \neq 0$
= $i((ps)/(qr) \cdot (r/s)) = i(1_S \cdot (r/s))$ since $ps = qr$
= $i(r/s)$.

Analysis 1

Hence, the value of i on an element of $\mathbb Q$ is independent of the representative of the element. That is, i is well-defined on $\mathbb Q$, as claimed.

February 7, 2024

February 7, 2024 39 / 46

Theorem 2.3.1

Theorem 2.3.1. The function $i : \mathbb{Q} \to S$ is a field and order isomorphism from the \mathbb{Q} onto a subfield of S.

Proof. The image of i is $S_{\mathbb{Q}}=\{i(p/q)\mid p/q\in\mathbb{Q}\}$. Of course i is onto its image, so i maps \mathbb{Q} onto $S_{\mathbb{Q}}$. Consider $i(p_1/q_1), i(p_2/q_2)\in S_{\mathbb{Q}}$ where $i(p_1/q_1)=i(p_2/q_2)$. Then $i(p_1)(i(q_1))^{-1}=i(p_2)(i(q_2))^{-1}$ or $i(p_1)i(q_2)=i(p_2)i(q_1)$ or $i(p_1q_2)=i(p_2q_1)$ by Theorem 1.3.1(b) and Theorem 1.3.2(b). Since i is one to one on \mathbb{Z} by Theorem 1.3.2(c), then $p_1q_2=p_2q_1$, or $p_1/q_1=p_2/q_2$ so that i is on to one on \mathbb{Q} .

Let $p_1/q_1, p_2/q_2 \in \mathbb{Q}$. Then

$$i\left(\frac{p_1}{q_1} \cdot \frac{p_2}{q_2}\right) = i\left(\frac{p_1p_2}{q_1q_2}\right) = i(p_1p_2)/i(q_1q_2) \text{ by the definition of } i$$

$$= i(p_1)i(p_2)/(i(q_1)i(q_2)) \text{ by Theorems 1.3.1(b) and 1.3.2(b)}$$

$$= \frac{i(p_1)}{i(q_1)} \cdot \frac{i(p_2)}{i(q_2)} = i\left(\frac{p_1}{q_1}\right)i\left(\frac{p_2}{q_2}\right) \text{ by the definition of } i.$$

Analysis 1

February 7, 2024

Theorem 2.3.1. An Ordered Field contains Q

Theorem 2.3.1 (continued 2)

Proof (continued). Now to show that i is an order isomorphism; that is, i preserves the order. As observed in Note RU.N, i maps positive integers to positive elements of S and maps negative integers to negative elements of S. Notice that for positive n in an ordered field we also have that $n^{-1} = 1/n$ by Kirkwood's Exercise 1.2.7(b) is positive. So for any positive $p/q \in \mathbb{Q}$ (say both p and q are positive integers) we have $i(p/q) = i(p)(i(q))^{-1}$ where i(p) and i(q) are positive. Since S is an ordered field and i(q) is positive, then Kirkwood's Exercise 1.2.7(b) gives that $(i(q))^{-1}$ is positive. So by the closure of the positive set in S, $i(p)(i(q))^{-1} = i(p)/i(q) = i(p/q)$ is positive. Hence i maps all positive rationals to positive elements of S. Similarly, if $p/q \in \mathbb{Q}$ is negative (say p < 0 and q > 0) we have i(p) is negative in S (as observed above), so $i(p/q) = i(p)(i(q))^{-1}$ is negative in S by Kirkwood's Theorem 1-7(d) (which implies that a positive times a negative is negative). So the positive set in S corresponds exactly to the positive set in \mathbb{O} under i. That is, i is a field and order isomorphism, as claimed.

Analysis 1 February 7, 2024 44 /

Theorem 2.3.1. An Ordered Field contains ©

Theorem 2.3.1 (continued 1)

Proof (continued). Also,

$$i\left(\frac{p_1}{q_1} + \frac{p_2}{q_2}\right) = i\left(\frac{p_1q_2 + p_2q_1}{q_1q_2}\right) = \frac{i(p_1q_2 + p_2q_1)}{i(q_1q_2)} \text{ by the definition of } i$$

$$= (i(p_1q_2) + i(p_2q_1))/(i(q_1)i(q_2)) \text{ by Theorems 1.3.1(a)}$$
and 1.3.2(a)
$$= \frac{i(p_1)i(q_2) + i(p_2)i(q_1)}{i(q_1)i(q_2)} \text{ by Theorems 1.3.1(b)}$$
and 1.3.2(b)
$$= \frac{i(p_1)i(q_2)}{i(q_1)i(q_2)} + \frac{i(p_2)i(q_1)}{i(q_1)i(q_2)} = \frac{i(p_1)}{i(q_1)} + \frac{i(p_2)}{i(q_2)}$$

$$= i(p_1/q_1) + i(p_2/q_2) \text{ by the definition of } i.$$

a subfield of S and i is actually a field isomorphism.

February 7, 2024

Therefore $i:\mathbb{Q}\to S_\mathbb{O}$ is a ring isomorphism. Since \mathbb{Q} is a field, then $S_\mathbb{O}$ is