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Theorem 2.1.1(a). Sums and products of Cauchy sequences

Theorem 2.1.1(a)

Theorem 2.1.1. Let x = x{x(n)} and y = {y(n)} be sequences of
rational numbers.

(1) If x and y are Cauchy sequences, then so are {x(n) + y(n)}
and {x(n)y(n)}.

Proof. (1) Let ε > 0. Since x(n) is a Cauchy sequence, then there is
natural number Nx(ε) such that for all m, n > Nx(ε) we have
|x(n)− x(m)| < ε/2. Since y(n) is a Cauchy sequence, then there is
natural number Ny (ε) such that for all m, n > Ny (ε) we have
|y(n)− y(m)| < ε/2. Let N(ε) = max{Nx(ε),Ny (ε)}.

Then for
m, n > N(ε) we have |(x(n) + y(n)− (x(m) + y(m))|

= |(x(n)− x(m)) + (y(n)− y(m))|
≤ |x(n)− x(m)|+ |y(n)− y(m)| by the Triangle Inequality

< ε/2 + ε/2 = ε since m, n > Nx(ε) and m, n > Ny (ε).

So {x(n) + y(n)} is Cauchy, as claimed.
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Theorem 2.1.1(a). Sums and products of Cauchy sequences

Theorem 2.1.1(a) (continued 1)

Theorem 2.1.1. Let x = x{x(n)} and y = {y(n)} be sequences of
rational numbers.

(1) If x and y are Cauchy sequences, then so are {x(n) + y(n)}
and {x(n)y(n)}.

Proof (continued). We saw that a Cauchy sequence of real numbers is
bounded in Kirkwood’s Exercise 2.3.13(a). In Exercises 1.4.7 and 1.4.11,
we have that a Cauchy sequence of rational numbers is bounded above
and below by integers. Since {x(n)} is a Cauchy sequence of real
numbers, then there is natural number Bx such that |x(n)| ≤ Bx for all
n ∈ N. Similarly, since {y(n)} is a Cauchy sequence of real numbers, then
there is natural number By such that |y(n)| ≤ By for all n ∈ N. Then
B = max{Bx ,By} is a bound for |x(n)| and |y(n)| for all n ∈ N.

Let ε > 0. Since x(n) is a Cauchy sequence, then there is natural number
N ′

x(ε) such that for all m, n > N ′
x(ε) we have |x(n)− x(m)| < ε/(2B).
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Theorem 2.1.1(a). Sums and products of Cauchy sequences

Theorem 2.1.1(a) (continued 2)

Proof (continued). Since y(n) is a Cauchy sequence, then there is
natural number N ′

y (ε) such that for all m, n > N ′
y (ε) we have

|y(n)− y(m)| < ε/(2B). Let N ′(ε) = max{N ′
x(ε),N

′
y (ε)}. For

m, n > N ′(ε) we have

|(x(n)y(n)− x(m)y(m)|
= |x(n)y(n)− x(n)y(m) + x(n)y(m)− x(m)y(m)|
≤ |x(n)y(n)− x(n)y(m)|+ |x(n)y(m)− x(m)y(m)|

by the Triangle Inequality

= |x(n)||y(n)− y(m)|+ |x(n)− x(m)||y(m)|
≤ B|y(n)− y(m) + |x(n)− x(m)|B
< (B)ε/(2B) + ε/(2B)× (B) = ε.

So {x(n)y(n)} is Cauchy, as claimed.
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Theorem 2.1.3. Addition and multiplication are well-defined

Theorem 2.1.3

Theorem 2.1.3. If {x(n)} and {x ′(n)} are equivalent Cauchy sequences
of rational numbers, and likewise for {y(n)} and {y ′(n)}, then
{x(n) + y(n)} and {x ′(n) + y ′(n)} are equivalent, and {x(n)y(n)} and
{x ′(n)y ′(n)} are equivalent.

Proof. First, since {x(n)} and {y(n)} are Cauchy sequences, then so are
{x(n) + y(n)} and {x(n)y(n)} by Theorem 2.1.1(a). Let {x(n)} and
{x ′(n)} be equivalent Cauchy sequences, and likewise for {y(n)} and
{y ′(n)}. Then {x(n)− x ′(n)} and {y(n)− y ′(n)} are null sequences.

By Theorem 2.1.1(b),

{(x(n) + y(n))− (x ′(n) + y ′(n)} = {(x(n)− x ′(n)) + (y(n)− y ′(n))}

= {x(n)− x ′(n)}+ {y(n)− y ′(n)}

is a null sequence. That is, {x(n) + y(n)} ∼ {x ′(n) + y ′(n)}, as claimed.
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Theorem 2.1.3. Addition and multiplication are well-defined

Theorem 2.1.3 (continued)

Theorem 2.1.3. If {x(n)} and {x ′(n)} are equivalent Cauchy sequences
of rational numbers, and likewise for {y(n)} and {y ′(n)}, then
{x(n) + y(n)} and {x ′(n) + y ′(n)} are equivalent, and {x(n)y(n)} and
{x ′(n)y ′(n)} are equivalent.

Proof. Next

{x(n)y(n)−x ′(n)y ′(n))} = {x(n)y(n)−x(n)y ′(n))+x(n)y ′(n)−x ′(n)y ′(n)}

= {x(n)(y(n)− y ′(n)) + y ′(n)(x(n)− x ′(n))}
= {x(n)(y(n)− y ′(n))}+ {y ′(n)(x(n)− x ′(n))}.

Since sequences {x(n)− x ′(n)} and {y(n)− y ′(n)} are null sequences
then by Theorem 2.1.1(3), sequences {x(n)(y(n)− y ′(n))} and
{y ′(n)(x(n)− x ′(n))} are also null sequences. By Theorem 2.1.1(2),
{x(n)(y(n)− y ′(n))}+ {y ′(n)(x(n)− x ′(n))} is a null sequence, so that
{x(n)y(n)− x ′(n)y ′(n))} is a null sequence. Hence
{x(n)y(n)} ∼ {x ′(n)y ′(n)}, as claimed.
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Theorem 2.1.4. R is a field

Theorem 2.1.4

Theorem 2.1.4. R is a field.

Proof. We need to verify the eight parts (or “axioms”) of the definition of
“field” given in Section 1.2. Properties of the Real Numbers as an Ordered
Field.

A1. We claim that + and · are binary operations. We just need to confirm
that, for given x and y, the sum and product of these are uniquely
determined. By definition, + and · each take a pair of equivalence classes
of Cauchy sequences of rational numbers (that is, a pair of real numbers)
and produce an equivalence class of Cauchy sequences of rational numbers
(i.e., real number). By Theorem 2.1.3, the product and sum are uniquely
determined. That is, + and · are binary operations, as claimed.

A2. We claim that + and · are associative. Let x, y, and z be real
numbers. Suppose {x(n)} ∈ x, {y(n)} ∈ y, and {z(n)} ∈ z.
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Theorem 2.1.4. R is a field

Theorem 2.1.4 (continued 1)

Theorem 2.1.4. R is a field.

Proof (continued). Then x + (y + z) is the equivalence class containing

{x(n)}+ ({y(n)}+ {z(n)}) = {x(n) + (y(n) + z(n))}
= {(x(n) + y(n)) + z(n)} since + is

associative in Q
= ({x(n)}+ {y(n)}) + {z(n)}.

Since ({x(n)}+ {y(n)}) + {z(n)} is in the equivalence class (x + y) + z,
then we have x + (y + z) = (x + y) + z, as claimed. Similarly, x · (y · z) is
the equivalence class containing

{x(n)} · ({y(n)} · {z(n)}) = {x(n) · (y(n) · z(n))}
= {(x(n) · y(n)) · z(n)} since · is

associative in Q
= ({x(n)} · {y(n)}) · {z(n)}.

() Analysis 1 February 10, 2024 9 / 51



Theorem 2.1.4. R is a field

Theorem 2.1.4 (continued 1)

Theorem 2.1.4. R is a field.

Proof (continued). Then x + (y + z) is the equivalence class containing

{x(n)}+ ({y(n)}+ {z(n)}) = {x(n) + (y(n) + z(n))}
= {(x(n) + y(n)) + z(n)} since + is

associative in Q
= ({x(n)}+ {y(n)}) + {z(n)}.

Since ({x(n)}+ {y(n)}) + {z(n)} is in the equivalence class (x + y) + z,
then we have x + (y + z) = (x + y) + z, as claimed. Similarly, x · (y · z) is
the equivalence class containing

{x(n)} · ({y(n)} · {z(n)}) = {x(n) · (y(n) · z(n))}
= {(x(n) · y(n)) · z(n)} since · is

associative in Q
= ({x(n)} · {y(n)}) · {z(n)}.

() Analysis 1 February 10, 2024 9 / 51



Theorem 2.1.4. R is a field

Theorem 2.1.4 (continued 2)

Theorem 2.1.4. R is a field.

Proof (continued). Since ({x(n)} · {y(n)}) · {z(n)} is in the equivalence
class (x · y) · z, then we have x · (y · z) = (x · y) · z, as claimed.

A3. We claim that + and · are commutative. Let x and y be real
numbers. Suppose {x(n)} ∈ x and {y(n)} ∈ y. Then x + y is the
equivalence class containing

{x(n)}+ {y(n)} = {x(n) + y(n)}
= {y(n) + x(n)} since + is commutative in Q
= {{y(n)}+ {x(n)}.

Since {y(n)}+ {x(n)} is in the equivalence class y + x, then we have
x + y = y + x.
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Theorem 2.1.4. R is a field

Theorem 2.1.4 (continued 3)

Proof (continued). Similarly, x · y is the equivalence class containing

{x(n)} · {y(n)} = {x(n) · y(n)}
= {y(n) · x(n)} since · is commutative in Q
= {{y(n)} · {x(n)}.

Since {y(n)} · {x(n)} is in the equivalence class y · x, then we have
x · y = y · x, as claimed.

A4. We claim that · distributes over +. With the notation above, we have

{x(n)}({y(n)}+ {z)n)}) = {x(n)(y(n) + z(n)}
= {x(n)y(n) + x(n)z(n)} since · distributes

over + in Q
= {x(n)}{y(n)}+ {x(n)}{z(n)}.

So the equivalence class x · (y + z) and the equivalence class x · y + x · z
are equal. That is, · distributes over + as claimed.
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Theorem 2.1.4. R is a field

Theorem 2.1.4 (continued 4)

Proof (continued). A5. We claim there exist additive and multiplicative
identities. Denote the equivalence class containing the Cauchy sequence of
rationals {x(n)}∞n=1 where x(n) = 0 for all n ∈ N as 0 (notice then that 0
is the equivalence class of all null sequences). We then have

{x(n)}+ {y(n)} = {0 + y(n)}
= {y(n)} since 0 is the additive identity in Q

So for any real number y, the equivalence class 0 + y and the equivalence
class y are equal. That is, 0 is the additive identity in R.

Similarly with {x(n)}∞n=1, where x(n) = 1 for all n ∈ N, denoted as 1 we
have

{x(n)} · {y(n)} = {1 · y(n)}
= {y(n)} since 1 is the multiplicative identity in Q

So for any real number y, the equivalence class 1 · y and the equivalence
class y are equal. That is, 1 is the multiplicative identity in R.
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Theorem 2.1.4. R is a field

Theorem 2.1.4 (continued 5)

Proof (continued). A6. We claim that every real number has an additive
inverse. Let {x(n)} be any Cauchy sequence of rationals. Define sequence
{y(n)}∞n=1 where y(n) = −x(n) for all n ∈ N. We then have

{x(n)}+ {y(n)} = {x(n) + y(n)} = {x(n)− x(n)}
= {0}∞n=1 since Q has additive inverses.

So the equivalence class containing {x(n)}+ {y(n)} is the same as the
equivalence class containing {0}∞n=1. Denoting the equivalence class
containing {y(n)} = {−x(n)} as −x, we have x + (−x) = 0 (or simply
“f − f = 0”). So every real number has an additive inverse, as claimed.

A7. We claim that every non-additive-identity (i.e., “nonzero”) has a
multiplicative inverse. The additive identity 0 is the equivalence class of all
null Cauchy sequences of rational numbers, so consider {x(n)} a non-null
Cauchy sequences of rational numbers.
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Theorem 2.1.4. R is a field

Theorem 2.1.4 (continued 6)

Proof (continued). Then by Henle’s Exercise 2.1.7, we have that there
are natural numbers M and N such that for all n > N we have
|x(n)| > 1/M. For such M and N, define {y(n)}∞n=1 where

y(n) =

{
x(n) if n ≤ N

1/x(n) if x > N.

We now have that

x(n)y(n) =

{
x(n)2 if n ≤ N

1 if x > N.

So {x(n)} · {y(n)} = {x(n)y(n)} converges to 1 and hence is in the
equivalence class 1 of part A5 above. That is, the equivalence class
containing x · y is the same as the equivalence class 1 (i.e., the
multiplicative identity). Denoting y as x−1, we have x · x−1 = 1, and so
every nonzero real number has a multiplicative inverse, as claimed.
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Theorem 2.1.5. “Positive real number” is well-defined

Theorem 2.1.5

Theorem 2.1.5. Let x ∈ R. If one sequence from equivalence class x is
positive, then all sequences in x are positive.

Proof. Suppose {x(n)} ∈ x is positive. Then, by definition of “positive,”
there are positive natural numbers M1 and N1 such that for all n > N1 we
have x(n) > 1/M1. Let {y(n)} ∈ x. Then {x(n)} ∼ {y(n)} and so
{x(n)− y(n)} is a null sequence (by definition of ∼), or
{x(n)− y(n)} → 0. This means that for all rational numbers ε > 0, there
is natural number N2 = N(ε) such that for all n > N2 we have
|x(n)− y(n)| < ε.

In particular, for ε = 1/(2M1) there is natural number
N3 such that for all n > N3 we have |x(n)− y(n)| < 1/(2M1). With
N = max{N1,N3} we now have for all n > N that both x(n) > 1/M1 and
|x(n)− y(n)| < 1/(2M1), and hence

1/(2M1) > |x(n)− y(n)| ≥ x(n)− y(n) > 1/M1 − yn

or yn > 1/M1 − 1/(2M1) = 1/(2M1).
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Theorem 2.1.5. “Positive real number” is well-defined

Theorem 2.1.5 (continued)

Theorem 2.1.5. Let x ∈ R. If one sequence from equivalence class x is
positive, then all sequences in x are positive.

Proof (continued). So we have natural numbers M and N (namely,
M = 2M1 and N = max{N1,N3} where M1, N1, and N3 are as above)
such that for all n > N we have y(n) > 1/M. That is, {y(n)} is a positive
sequence. Since {y(n)} is an arbitrary sequence of x, then all sequences in
x are positive, as claimed.
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Theorem 2.1.6. R is ordered

Theorem 2.1.6

Theorem 2.1.6. The field of real numbers R is ordered.

Proof. We know that R is a field by Theorem 2.1.4, so we just need to
verify that the set of positive equivalence classes is (i) closed under
addition, (ii) closed under multiplication, and (iii) satisfies the Law of
Trichotomy (see “Axiom 8/Definition of Ordered Field” in Section 1.2.
Properties of the Real Numbers as an Ordered Field).

First, suppose x and y are both positive. Let {x(n)} be a Cauchy
sequence of rationals in x, and let {y(n)} be a Cauchy sequence of
rationals in y. Then by definition there are natural numbers Mx and Nx

such that for all n > Nx we have x(n) > 1/Mx , and there are natural
numbers My and Ny such that for all n > Ny we have y(n) > 1/My .
Define positive integers M = dMxMy/(Mx + My )e and N = max{Nx ,Ny}.
Then for all n > N we have

x(n) + y(n) >
1

Mx
+

1

My
=

Mx + My

MxMy
=

(
Mx + My

MxMy

)−1

≥ 1

M
.
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Theorem 2.1.6. R is ordered

Theorem 2.1.6 (continued 1)

Theorem 2.1.6. The field of real numbers R is ordered.

Proof (continued). Therefore, by definition,
{x(n)}+ {y(n)} = {x(n) + y(n)} is positive, so that x + y is positive.
That is, the set of positive equivalence classes is (i) closed under addition,
as claimed.

With x, y, {x(n)}, {y(n)}, and Mx ,My ,Nx ,Ny ∈ N as above, define
positive integers M = dMxMye and N = max{Nx ,Ny}. Then for all
n > N we have

x(n)y(n) >
1

Mx

1

My
=

1

MxMy
= (MxMy )−1 ≥ 1

M
.

Therefore, by definition, {x(n)} · {y(n)} = {x(n)y(n)} is positive, so that
x · y is positive. That is, the set of positive equivalence classes is (ii)
closed under multiplication, as claimed.
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Theorem 2.1.6. R is ordered

Theorem 2.1.6 (continued 2)

Theorem 2.1.6. The field of real numbers R is ordered.

Proof (continued). Now for the Law of Trichotomy. First we show that
the sets {x ∈ R | x is positive}, {x ∈ R | −x is positive}, and
{x ∈ R | x is null} are disjoint.

Suppose x is positive. Then for some {x(n)} in x, there are natural
numbers M and N such that for all n > N we have x(n) > 1/M. Then we
cannot have that {x(n)} is null, as we see by considering positive
ε = 1/M. Also, for {−x(n)} we know that for all n > N we have
−x(n) < −1/M so that we cannot have {−x(n)} positive (since all terms
−x(n) are less than 0 whenever n > N and so cannot be greater than 1/M
for any positive integer M); that is, {−x(n)} is not positive. Therefore,
there are no positive real numbers x for which −x is also positive or x = 0.
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Theorem 2.1.6. R is ordered

Theorem 2.1.6 (continued 3)

Theorem 2.1.6. The field of real numbers R is ordered.

Proof (continued). Suppose −x is positive. Then for some {x(n)} in x,
there are natural numbers M and N such that for all n > N we have
−x(n) > 1/M. Then we cannot have that {−x(n)} is null, as we see by
considering positive ε = 1/M. Also, for {−(−x(n))} = {x(n)} we know
that for all n > N we have x(n) < −1/M so that we cannot have {x(n)}
positive (since all terms x(n) are less than 0 whenever n > N and so
cannot be greater than 1/M for any natural number M); that is, {x(n)} is
not positive. Therefore, there are no positive real numbers −x for which x
is also positive or −x = 0.

Suppose x is null (i.e., x = 0). Let {x(n)} be in x = 0. Then for all
rational ε > 0 there is integer N(ε) such that for all n > N(ε) we have
|x(n)− 0| = |x(n)| < ε. For any natural number M, with ε = 1/M we
know that there is natural number N(1/M) such that for all n > N(1/M)
we have |x(n)| < 1/M.
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Theorem 2.1.6. R is ordered

Theorem 2.1.6 (continued 4)

Theorem 2.1.6. The field of real numbers R is ordered.

Proof (continued). Hence, there cannot be a natural number N such
that for all n > N we have either x(n) > 1/M or −x(n) > 1/M. That is,
{x(n)} is not positive and {−x(n)} is not positive. Hence, the real
number 0 is not positive and the real number −0 is not positive.
Therefore, the sets {x ∈ R | x is positive}, {x ∈ R | −x is positive}, and
{x ∈ R | x is null} are disjoint, as claimed. (We have given extra details
here by considering all cases twice.)

Finally, we need to show that for every real number x, either x is positive,
−x is positive, or x = 0. To prove this, suppose real number f is not
positive and −f is not positive. Let {x(n)} be in f.

Let ε = p/q > 0 be
rational. Since {x(n)} is not positive, then there are infinitely many x(n)
satisfying x(n) ≤ 1/(2q) (or else we could take natural number M = 2q
and there would then be a final x(n) with x(n) ≤ 1/(2q) so that no
natural number N would exist with n > N implying x(n) > 1/M).
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Theorem 2.1.6. R is ordered

Theorem 2.1.6 (continued 5)

Theorem 2.1.6. The field of real numbers R is ordered.

Proof (continued). Similarly, since {−x(n)} is not positive, then there
are infinitely many x(n) satisfying −x(n) ≤ 1/(2q) (i.e., x(n) ≥ 1/(2q)).
Since {x(n)} is Cauchy, there exists natural number N(1/(2q)) such that
for all m, n > N(1/(2q)) we have |x(n)− x(m)| < 1/(2q). Now one such
x(m) (infinitely many, in fact) is less than or equal to 1/(2q), so for all
n > N(1/(2q)) we must have x(n) < 1/(2q) + 1/(2q) = 1/q ≤ ε. Also,
one such x(m) is greater than or equal to −1/(2q), so for all
n > N(1/(2q)) we must have x(n) > −1/(2q)− 1/(2q) = −1/q ≥ −ε.
That is, for all n > N(1/2q) we have |x(n)− 0| = |x(n)| < ε. Hence,
{x(n)} → 0, {x(n)} is a null sequence, and x = 0. Therefore, for every
real number x, either x is positive, −x is positive (that is, x is negative), or
x is null (that is, x = 0). This verifies that the set of real numbers
{x ∈ R | x is positive} satisfies the definition of “positive set” in an
ordering of a field.
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Lemma 1.4.A. Q is Archimedean

Lemma 1.4.A

Lemma 1.4.A. (Exercise 1.4.14 in Henle.) The ordered field of rational
numbers Q is Archimedean.

Proof. Let a = p1/q1 and b = p2/q2 be positive rational numbers where
p1, q1, p2, q2 are (positive) natural numbers. If b < a we take n = 1 so
that b < 1a = a. If a ≤ b then p1/q1 ≤ p2/q2 and by Kirkwood’s
Theorem 1-7(c) this implies p1q2 ≤ p2q1. Since 1 ≤ p1q2 and 0 < p2/q2

then (1)(p2q1) ≤ (p1q2)(p2q1), also by Kirkwood’s Theorem 1-7(c). By
Kirkwood’s Example 1.2.7(b) we have that 1/q1 and 1/q2 are positive.

Therefore (p2q1)/(q1q2) ≤ (p1q2)(p2q1)/(q1q2) or
p2/q2 ≤ (p2q1)(p1/q1). Now 0 < 1 (Kirkwood’s Exercise 1.2.7(a)), so by
Kirkwood’s Theorem 1-7(a), 0 + (p2q1) < 1 + (p2q1), or by Theorem
1-7(c), (p2q1)(p1/q1) < (1 + p2q1)(p1/q1). So with n = 1 + p2q1 we have
b = p2/q2 < (1 + p2q1)(p1/q1) = na. Therefore Q is Archimedean, as
claimed.
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Thm 1.4.3. Order Complete⇔ Cauchy Complete & Archimedean

Theorem 1.4.3

Theorem 1.4.3. An ordered field is order complete if and only if it is
Cauchy complete and Archimedean.

Proof. Let S denote the ordered field. First, suppose S is order complete.
Then by Theorem 1.4.2 (or Kirkwood’s Exercises 2.3.13 and 2.2.14), S is
Cauchy complete. By Kirkwood’s Theorem 1-18 (The Archimedean
Principle), S is Archimdean. Hence, if S is order complete then it is
Cauchy complete and Archimedean (as we establish in Analysis 1 [MATH
4217/5217] in Chapter 1, The Real Number System, and Chapter 2,
Sequences of Real Numbers).

Now suppose S is Cauchy complete and Archimedean. Let G be a
nonempty subset of S that is bounded above. Let g ∈ G and define
a1 = g − 1. Let b1 be an upper bound of G strictly greater than a1.
Consider interval [a1, b1] and let d1 = (a1 + b1)/2 (the midpoint of the
interval; notice 1 is the multiplicative identity of S and “2” denotes 1 + 1,
and any positive integer k is similarly represented in S).
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Thm 1.4.3. Order Complete⇔ Cauchy Complete & Archimedean

Theorem 1.4.3 (continued 1)

Theorem 1.4.3. An ordered field is order complete if and only if it is
Cauchy complete and Archimedean.

Proof (continued). Either d is an upper bound for G or it is not. If d is
an upper bound, set s1 = a1 and b2 = d ; if d is not an upper bound, set
a2 = d and b2 = b1. Consider interval [a2, b2] and notice that the length
of [a2, b2] is half the length of [a1, b1]. Let d2 = (a2 + b2)/2, and iterate
the process to create [a3, b3], [a4, b4], etc. At each stage, we have bi is an
upper bound of G , ai is not an upper bound of G , and interval [ai , bi ] has
length (b1 − ai )/2i . Let k ∈ S+ (that is, k is a positive element of ordered
field S). Since S is Archimedean by hypothesis, there is integer N (notice
that N = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

N times

) such that (b1 − a1)/N < k. Now N ≤ 2N for

all positive integers N ∈ S (as is easily shown by mathematical induction),
so the length of Nth interval [aN , bN ] is

bN = aN = (b1 − a1)/2N ≤ (b1 − a1)/N < k.
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Thm 1.4.3. Order Complete⇔ Cauchy Complete & Archimedean

Theorem 1.4.3 (continued 2)

Proof (continued).

So sequence {bi}∞i=1 (of right had endpoints) is Cauchy, since for any
positive k, for m, n > N we have bm, bn ∈ [aN , bN ] and so
|bm − bn| ≤ bN − aN < k. Since S is Cauchy complete by hypothesis, then
{bi} converges and there is c ∈ S such that limi→∞ bi = c . Similarly, {ai}
is Cauchy and for m, n > N we have am, an ∈ [aN , bN ] and |am − an| < k.
So {ai} converges as well; say limi→∞ ai = c ′. ASSUME c ′ 6= c . Then for
|c − c ′|/3 = k we have k > 0 and there exists positive integers Na and Nb

such that for all n > Na we have |an − c ′| < |c − c ′|/3, and for all n > Nb

we have |bn − c | < |c − c ′|/3.
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Thm 1.4.3. Order Complete⇔ Cauchy Complete & Archimedean

Theorem 1.4.3 (continued 3)

Theorem 1.4.3. An ordered field is order complete if and only if it is
Cauchy complete and Archimedean.

Proof (continued). So for all n > max{Na,Nb} we have we have

|c ′ − c | = |c ′ − an + an − bn + bn − c | ≤ |c ′ − an|+ |an − bn|+ |bn − c |
< |c − c ′|/3 + |an − bn|+ |c − c ′|/3

or |an − bn| > |c ′ − c |. (∗)
But as shown above, for any positive k (such as k = |c ′ − c | there is
natural number N such that for all n > N we have |an−bn| = bn− an < k.
But this CONTRADICTS (∗), so the assumption that c ′ 6= c is false, and
hence limi→∞ ai = c = limi→∞ bi . Since {ai} is a monotone increasing
sequence and {bi} is a monotone decreasing sequence, then for all i ∈ N
we have ai ≤ c ≤ bi . So by the definition of limit, for any given positive
integer k there is an ∈ {ai} and bm ∈ {bi} such that

c − 1/k < an ≤ c ≤ bm < c + 1/k. (∗∗)
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Thm 1.4.3. Order Complete⇔ Cauchy Complete & Archimedean

Theorem 1.4.3 (continued 4)

Proof (continued). ASSUME c is not an upper bound of G . Then there
is g ∈ G such that g > c . By the hypothesized Archimedean property of
S , there is an integer k such that 1/k < g − c . Then by (∗∗),
c ≤ bm < c + 1/k < c + (g − c) = g . But this CONTRADICTS the fact
that (by construction) bm is an upper bound of G . So the assumption that
c is not an upper bound of G is false, and hence c is an upoer bound of G .

ASSUME c is not the least upper bound of G . Then there is an upper
bound B with B < c . By the hypothesized Archimedean property of S ,
there is an integer k such that 1/k < c − B. Then by (∗∗),
B < c − 1/k < an, so that an is an upper bound of G . But this
CONTRADICTS the construction of an where every an is NOT an upper
bound of G (recall that ai = di−1 = ai−1 + bi−1)/2 only when di is not an
upper bound of G ). So the assumption that c is not the least upper bound
of G is false, and hence x is the least upper bound of G . Since G is an
arbitrary nonempty subset of S , then S is order complete, as claimed.

() Analysis 1 February 10, 2024 28 / 51



Thm 1.4.3. Order Complete⇔ Cauchy Complete & Archimedean

Theorem 1.4.3 (continued 4)

Proof (continued). ASSUME c is not an upper bound of G . Then there
is g ∈ G such that g > c . By the hypothesized Archimedean property of
S , there is an integer k such that 1/k < g − c . Then by (∗∗),
c ≤ bm < c + 1/k < c + (g − c) = g . But this CONTRADICTS the fact
that (by construction) bm is an upper bound of G . So the assumption that
c is not an upper bound of G is false, and hence c is an upoer bound of G .

ASSUME c is not the least upper bound of G . Then there is an upper
bound B with B < c . By the hypothesized Archimedean property of S ,
there is an integer k such that 1/k < c − B. Then by (∗∗),
B < c − 1/k < an, so that an is an upper bound of G . But this
CONTRADICTS the construction of an where every an is NOT an upper
bound of G (recall that ai = di−1 = ai−1 + bi−1)/2 only when di is not an
upper bound of G ). So the assumption that c is not the least upper bound
of G is false, and hence x is the least upper bound of G . Since G is an
arbitrary nonempty subset of S , then S is order complete, as claimed.

() Analysis 1 February 10, 2024 28 / 51



Theorem 2.1.A. R is Archimedean

Theorem 2.1.A

Theorem 2.1.A. The ordered field of real numbers R is Archimedean.

Proof. Let x and y be positive real numbers. Let {x(n)} be in x. Then
{x(n)} is positive and, by definition, there are natural numbers M and N
so that for n > N we have x(n) > 1/M. Define
{x ′(n)} = {x(N + 1), x(N + 2), . . .} (so that {x ′(n)} is a subsequence of
{x(n)}). Then {x ′(n)} is also in x and is bounded below by the rational
number 1/(2M). Let a be the equivalence class containing {a, a, . . .}.
Then a < x, where a is rational.

Let {y(n)} be in y. Now {y(n)} is a Cauchy sequence of rational
numbers, so for ε = 1 there is natural number N(1) such that for all
m, n > N(1) we have |y(n)− y(m)| < ε = 1. Then {y(n)} is bounded
above by the rational number max{y(1), y(2), . . . , y(N(1)), y(N(1) + 1)}.
Let b = max{y(1), y(2), . . . , y(N(1)), y(N(1) + 1)}+ 1 and let b be the
equivalence class containing {b, b, . . .}. Then y < b, where b is rational.
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Theorem 2.1.A. R is Archimedean

Theorem 2.1.A (continued)

Theorem 2.1.A. The ordered field of real numbers R is Archimedean.

Proof (continued). So for any positive real numbers x and y, we have
rational a and b such that 0 < a < x and y < b.

The rational numbers form an Archimedean field by Lemma 1.4.A, so for
positive rational numbers a and b, we have that there is a natural number
n such that na > b (or na− b is positive). For sequences {n, n, . . .},
{a, a, . . .}, and {b, b, . . .} we have
{n, n, . . .} · {a, a, . . .} − {b, b, . . .} = {na− b, na− b, . . .} is positive.
Therefore na− b is positive, or na > b. Similarly na < nx, and so by
transitivity of the ordering we have y < b < na < nx. That is, for any
positive real numbers x and y, there is a natural number n such that
nx > y so that R is Archimedean, as claimed.
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Theorem 2.1.A (continued)
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Theorem 2.1.7. R is an order complete field

Theorem 2.1.7

Theorem 2.1.7. The real numbers R form an order complete ordered
field.

Proof. We need to show that an arbitrary Cauchy sequence of real
numbers converges to a real number. Let {x(n)} be a Cauchy sequence of
real numbers. We want to show that this sequence converges to a real
number b. We do so by finding a Cauchy sequence of rational numbers
{bn}∞n=1 and then consider the equivalence class b containing {bn}∞n=1.

For each n ∈ N let {x(n, i)}∞i=1 be a representative of x(n). Then
{x(n, i)}∞i=1 is a Cauchy sequence of rational numbers, so there exists
natural number Nn such that for all j , k > Nn we have
|x(n, j)− x(n, k)| < 1/n. Define bn = x(n,Nn + 1), so that

|x(n, i)− bn| < 1/n for all i > Nn. (1)

Then {bn} is a sequence of rational numbers.
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Theorem 2.1.7. R is an order complete field

Theorem 2.1.7 (continued 1)

Theorem 2.1.7. The real numbers R form an order complete ordered
field.

Proof (continued). Next, we show that {bn}∞n=1 is Cauchy. Let ε > 0
where ε is rational (we consider a rational ε since, by definition, this is
what is needed to show a sequence of rationals is Cauchy). Since ordered
field Q is Archimedean by Lemma 1.4.A, there is natural number
N∗ = N∗(ε) such that

1/N∗ < ε/3 (2)

Since {x(n)}∞n=1 is a Cauchy sequence of real numbers by hypothesis, then
with ε/3 = (ε/3, ε/3, . . .) we have by Note RU.K that there exists natural
number N∗∗ = N∗∗(ε) such that for all m, n > N∗∗ there are natural
numbers Mc and Nc (dependent on m and n) where for all i > Nc we have
ε/3− |x(n, i)− x(m, i)| > 1/Mc or

|x(n, i)− x(m, i)| < ε/3− 1/Mc < ε/3. (3)
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Theorem 2.1.7. R is an order complete field

Theorem 2.1.7 (continued 2)

Theorem 2.1.7. The real numbers R form an order complete ordered
field.

Proof (continued). Let N = max{N∗,N∗∗} and suppose m, n > N.
(Notice that N depends on ε and not on m and/or n.) Since m, n > N∗∗

then there exist natural numbers M ′ and N ′ such that for all i > N ′ we
have by (3) that

|x(n, i)− x(m, i)| < ε/3− 1/M ′ < ε/3. (4)

For i > Nn we have by (1) that

|bn − x(n, i)| < 1/n (5)

and for i > Nm we have by (1) that

|bm − x(m, i)| < 1/m. (6)
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Theorem 2.1.7. R is an order complete field

Theorem 2.1.7 (continued 3)

Proof (continued). So for any i > max{N ′,Nn,Nm} (notice the value of
i depends on m and n) we have

|bn − bm| = |bn − x(n, i) + x(n, i)− x(m, i) + x(m, i)− bm|
≤ |bn − x(n, i)|+ |x(n, i)− x(m, i)|+ |x(m, i)− bm|

by the Triangle Inequality in Q
< 1/n + ε/3 + 1/m by (5) (since i > Nn),

(4) (since m, n > N∗∗ and i > N ′), and

(6) (since i > Nm), respectively)

< ε/3 + ε/3 + ε/3 = ε by (2) since m, n > N∗.

That is, for all m, n > N we have |bn − bm| < ε. Therefore, {bn}∞n=1 is a
Cauchy sequence of rational numbers. Hence, the equivalence class
containing {bn}∞n=1, b, is a real number.
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Theorem 2.1.7. R is an order complete field

Theorem 2.1.7 (continued 4)

Theorem 2.1.7. The real numbers R form an order complete ordered
field.

Proof (continued). To prove b is the limit of {x(n)}∞n=1, let ε > 0 where
ε is a real number (we consider a real ε since this is needed to show
convergence of a sequence of real numbers). Let {e(i)}∞i=1 be a
representative of ε. Since ε is positive, then by the definition of a positive
Cauchy sequence of rational numbers. So (by definition) there are natural
numbers M ′ and N ′ so that for all i > N ′ we have e(i) > 1/M ′. Consider
the constant sequence {1/M ′}∞i=1 as a representative of real number
1/M′. We now have 1/M′ < ε.

As above, let {x(n, i)}∞i=1 be a representative of x(n). Let N(ε) = 2M ′.
Then for all n > N(ε) we have by (1) that there is a natural number Nn

such that if i > Nn then |x(n, i)− bn| < 1/n < 1/(2M ′).
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Theorem 2.1.7. R is an order complete field

Theorem 2.1.7 (continued 4)

Theorem 2.1.7. The real numbers R form an order complete ordered
field.

Proof (continued). To prove b is the limit of {x(n)}∞n=1, let ε > 0 where
ε is a real number (we consider a real ε since this is needed to show
convergence of a sequence of real numbers). Let {e(i)}∞i=1 be a
representative of ε. Since ε is positive, then by the definition of a positive
Cauchy sequence of rational numbers. So (by definition) there are natural
numbers M ′ and N ′ so that for all i > N ′ we have e(i) > 1/M ′. Consider
the constant sequence {1/M ′}∞i=1 as a representative of real number
1/M′. We now have 1/M′ < ε.

As above, let {x(n, i)}∞i=1 be a representative of x(n). Let N(ε) = 2M ′.
Then for all n > N(ε) we have by (1) that there is a natural number Nn

such that if i > Nn then |x(n, i)− bn| < 1/n < 1/(2M ′).

() Analysis 1 February 10, 2024 35 / 51



Theorem 2.1.7. R is an order complete field

Theorem 2.1.7 (continued 5)

Theorem 2.1.7. The real numbers R form an order complete ordered
field.

Proof (continued). That is, for all n > N(ε) there are natural numbers
M and N, namely N = Nn and M = 2M ′, such that if i > N then
|x(n, i)− bn| < 1/(2M ′) = 1/M ′ − 1/(2M ′) or
1/M ′ = |x(n, i)− bn| > 1/(2M ′) and hence
e(i) = |x(n, i)− bn| > 1/M ′ = |x(n, i)− bn| > 1/(2M ′) = 1/M. By Note
RU.L, this gives (in terms of real numbers) |x(n)− b| < 1/M′ < ε.
Therefore x(n) converges to b.

Since x(n) is an arbitrary Cauchy sequence of real numbers, then every
Cauchy sequence of real numbers converges. That is, R is Cauchy
complete. By Theorem 1.2.A, R is Archimedean, so by Theorem 1.4.3 we
have that R is order complete, as claimed.
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Theorem 1.3.1. Properties of Embedding N in S

Theorem 1.3.1

Theorem 1.3.1. The function i : N ∪ {0} → S , where S is an ordered
field, satisfies:

(a) i(n + m) = i(n) + i(m) for all m, n ∈ N ∪ {0},
(b) i(nm) = i(n)i(m) for all m, n ∈ N ∪ {0}, and

(c) i is one to one on N ∪ {0}.

Proof. (a) This holds trivially for n = 0. We give an inductive proof on n.
Let m ∈ N be arbitrary but fixed. For the base case n = 1, we have

i(1 + m) = 1S + 1S + · · ·+ 1S + 1S︸ ︷︷ ︸
1+m times

= 1S + (1S + 1S + · · ·+ 1S︸ ︷︷ ︸
m times

)

= i(1) + i(m) by the definition of i .

For the induction hypothesis, suppose for n = k ≥ 1 we have
i(k + m) = i(k) + i(m).
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Theorem 1.3.1. Properties of Embedding N in S

Theorem 1.3.1 (continued 1)

Theorem 1.3.1. The function i : N ∪ {0} → S , where S is an ordered
field, satisfies:

(a) i(n + m) = i(n) + i(m) for all m, n ∈ N ∪ {0}.

Proof (continued). Now consider:

i((k + 1) + m) = i((k + m) + 1) = i(k + m+1S by the base case,

where m is replaced with k + m

= (i(k) + i(m)) + 1S by the induction hypothesis

= (i(k) + 1S) + i(m) = i(k + 1) + i(m) by the

base case where m is replaced with k + 1.

So the result holds for n = k + 1 giving the induction step. Therefore, the
claim holds for all n ∈ N by mathematical induction and, since m ∈ N is
arbitrary, i(n + m) = i(n) + i(m) for all m, n ∈ N, as claimed.
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Theorem 1.3.1. Properties of Embedding N in S

Theorem 1.3.1 (continued 2)

Theorem 1.3.1. The function i : N ∪ {0} → S , where S is an ordered
field, satisfies:

(b) i(nm) = i(n)i(m) for all m, n ∈ N ∪ {0}.

Proof (continued). (b) Again, we give a inductive proof on n. Let
m ∈ N be arbitrary but fixed. For the base case n = 1, we have
i(1m) = i(m) = 1S i(m) = i(1)i(m). For the inductive hypothesis, suppose
for n = k ≥ 1 we have i(km) = i(k)i(m). Now consider:

i((k + 1)m) = i(km + m) = i(km) + i(m) by part (a)

= i(k)i(m) + i(m) by the induction hypothesis

= i(k + 1)i(m( by part (a).

So the result holds for n = k + 1, giving the induction step . Therefore,
the claim holds for all n ∈ N by mathematical induction and, since m ∈ N
is arbitrary, i(nm) = i(n)i(m) for all m, n ∈ N, as claimed.
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Theorem 1.3.1. Properties of Embedding N in S

Theorem 1.3.1 (continued 3)

Theorem 1.3.1. The function i : N ∪ {0} → S , where S is an ordered
field, satisfies:

(c) i is one to one on N ∪ {0}.

Proof (continued). (c) To show i is one to one, suppose i(m) = i(n) for
some m, n ∈ N where, WLOG, say n ≥ m. Then

i(n) = i(n −m + m) = i(n −m) + i(m) or i(n)− i(m) = i(n −m)

or (since i(n) = i(m)) 0S = i(n −m). But the only nonnegative integer
mapped mapped to 0S is 0, so that n −m = 0 and n = m. That is, i is
one to one on N ∪ {0}, as claimed.

() Analysis 1 February 10, 2024 40 / 51



Theorem 2.3.B. Embedding i : Q→ S is well-defined

Theorem 2.3.3

Theorem 2.3.B. (Problem 2.3.1) Mapping i : Q → S is well-defined.
That is, i(p/q) = i(r/s) for p/q = r/s where p, q, r , s ∈ Z.

Proof. Notice that rational numbers p/q and r/s (where p, q, r , s ∈ Z
with q 6= 0 and s 6= 0) are equal if and only if ps = qr . If r = 0 then
ps = qr = q(0) = 0 so that p = 0 since s 6= 0. Then p/q = r/s = 0 and
i(p/q) = i(r/s) = 0S . So we assume WLOG that r 6= 0. With p/q = r/s
we have

i(p/q) = r((p/q)(1S)) = i((p/q)(r/s)(s/r)) since r 6= 0

= i((ps)/(qr) · (r/s)) = i(1S · (r/s)) since ps = qr

= i(r/s).

Hence, the value of i on an element of Q is independent of the
representative of the element. That is, i is well-defined on Q, as
claimed.
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Theorem 2.3.1. An Ordered Field contains Q

Theorem 2.3.1

Theorem 2.3.1. The function i : Q → S is a field and order isomorphism
from the Q onto a subfield of S .

Proof. The image of i is SQ = {i(p/q) | p/q ∈ Q}. Of course i is onto its
image, so i maps Q onto SQ. Consider i(p1/q1), i(p2/q2) ∈ SQ where
i(p1/q1) = i(p2/q2). Then i(p1)(i(q1))

−1 = i(p2)(i(q2))
−1 or

i(p1)i(q2) = i(p2)i(q1) or i(p1q2) = i(p2q1) by Theorem 1.3.1(b) and
Theorem 1.3.2(b). Since i is one to one on Z by Theorem 1.3.2(c), then
p1q2 = p2q1, or p1/q1 = p2/q2 so that i is on to one on Q.

Let p1/q1, p2/q2 ∈ Q. Then

i

(
p1

q1
· p2

q2

)
= i

(
p1p2

q1q2

)
= i(p1p2)/i(q1q2) by the definition of i

= i(p1)i(p2)/(i(q1)i(q2)) by Theorems 1.3.1(b) and 1.3.2(b)

=
i(p1)

i(q1)
· i(p2)

i(q2)
= i

(
p1

q1

)
i

(
p2

q2

)
by the definition of i .
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Theorem 2.3.1. An Ordered Field contains Q

Theorem 2.3.1
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Theorem 2.3.1. An Ordered Field contains Q

Theorem 2.3.1 (continued 1)

Proof (continued). Also,

i

(
p1

q1
+

p2

q2

)
= i

(
p1q2 + p2q1

q1q2

)
=

i(p1q2 + p2q1)

i(q1q2)
by the definition of i

= (i(p1q2) + i(p2q1))/(i(q1)i(q2)) by Theorems 1.3.1(a)

and 1.3.2(a)

=
i(p1)i(q2) + i(p2)i(q1)

i(q1)i(q2)
by Theorems 1.3.1(b)

and 1.3.2(b)

=
i(p1)i(q2)

i(q1)i(q2)
+

i(p2)i(q1)

i(q1)i(q2)
=

i(p1)

i(q1
+

i(p2)

i(q2)

= i(p1/q1) + i(p2/q2) by the definition of i .

Therefore i : Q → SQ is a ring isomorphism. Since Q is a field, then SQ is
a subfield of S and i is actually a field isomorphism.
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Theorem 2.3.1. An Ordered Field contains Q

Theorem 2.3.1 (continued 2)

Proof (continued). Now to show that i is an order isomorphism; that is,
i preserves the order. As observed in Note RU.N, i maps positive integers
to positive elements of S and maps negative integers to negative elements
of S . Notice that for positive n in an ordered field we also have that
n−1 = 1/n by Kirkwood’s Exercise 1.2.7(b) is positive. So for any positive
p/q ∈ Q (say both p and q are positive integers) we have
i(p/q) = i(p)(i(q))−1 where i(p) and i(q) are positive. Since S is an
ordered field and i(q) is positive, then Kirkwood’s Exercise 1.2.7(b) gives
that (i(q))−1 is positive. So by the closure of the positive set in S ,
i(p)(i(q))−1 = i(p)/i(q) = i(p/q) is positive. Hence i maps all positive
rationals to positive elements of S .

Similarly, if p/q ∈ Q is negative (say
p < 0 and q > 0) we have i(p) is negative in S (as observed above), so
i(p/q) = i(p)(i(q))−1 is negative in S by Kirkwood’s Theorem 1-7(d)
(which implies that a positive times a negative is negative). So the
positive set in S corresponds exactly to the positive set in Q under i . That
is, i is a field and order isomorphism, as claimed.
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Theorem 2.3.3. Uniqueness of the Complete Ordered Field, R

Theorem 2.3.3

Theorem 2.3.3. Every order complete ordered field is isomorphic to R
(where we take R to be the complete ordered field of equivalence classes
of Cauchy sequences of rational numbers).

Proof. Let S be a complete, ordered field. We will define an isomorphism
i : R → S . On Q ⊂ R, we define i as above. We take R as the “Cantor
reals” of Cauchy sequences of real numbers. So the equivalence class of
rational numbers which converge to p/q ∈ Q, p/q, is mapped by i into S
as p/q 7→ i(p)(i(q))−1 = i(p)/i(q).

For x any real number, we take {x(n)}∞n=1 a representative of x. Then
{x(n)}∞n=1 is a Cauchy sequence of rational numbers. Consider the
sequence {i(x(n))}∞n=1 in S . Let ε ∈ S be positive (we consider a positive
element of S since we want to show convergence in S). An order complete
field is Archimedean by Theorem 1.4.3, so there is a natural number
k ∈ SN such that 1/k < ε. With k ∈ N, 1/k ∈ R satisfies i(1/k) = 1/k.
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Theorem 2.3.3. Uniqueness of the Complete Ordered Field, R

Theorem 2.3.3 (continued 1)

Proof (continued). Since {x(n)}∞n=1 is a Cauchy sequence of rational
numbers, then there is N(1/k) ∈ N such that for all m, n > N we have
|x(n) = x(m)| < 1/k. Since i : Q → S is an order isomorphism by
Theorem 2.3.1, then for all m, n > N we have
|i(x(m))− i(x(n))| < i(1/k) = 1/k < ε. Therefore {i(x(n))}∞n=1 is a
Cauchy sequence in S . Since S is order complete then it is Cauchy
complete by Theorem 1.4.3, so {i(x(n))}∞n=1 converges to an element of
S . Define i(x) = limn→∞ i(x(n)). Then i : R → S .

We now show that i is well-defined. Let {x(n)}∞n=1, {x ′(n)}∞n=1 ∈ x. Then
by the definition of “equivalent sequences of rational numbers,”
{x(n)− y(x)}∞n=1 is a null sequence so that limn→∞(x(n=x ′(n)) = 0. So
for all natural numbers k there is N(k) = N ∈ N such that for all n > N
we have −1/k < x(n)− x ′(n) < 1/k (since R is Archimedean by Theorem
2.1.A).
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Theorem 2.3.3. Uniqueness of the Complete Ordered Field, R

Theorem 2.3.3 (continued 2)

Proof (continued). Since i : Q → S is an order isomorphism by Theorem
2.3.1, for all n > N we have i(−1/k) < i(x(n))− i(x ′(n)) < i(1/k) or
|i ∗ x(n))− i(x ′(n))| < i(1/k). Since S is Archimedean by Theorem 1.4.3,
then limn→∞(x(n)− x ′(n)) = 0 and, since limn→∞ x(n) and
limn→infty x ′(n) both exist as shown above,
i(x= limn→∞ x(n) = limn→∞ x ′(n). Therefore i : R → S is well-defined.

Next, we show that i is one to one. Suppose i(x) = i(x′). Let x(n)}∞n=1 be
a representative of x and let {x ′(n)}∞n=1 be a representative of x′. Then
i(x) = limn→∞ i(x(n)) = limn→∞ i(x ′(n)) = i(x′). So
limn→∞ i(x(n))− limn→∞ i(x ′(n)) = limn→∞(i(x(n))− i(x ′(n)) = 0. So
for all natural numbers k ∈ SN, there is natural number N(k) = N ∈ N
such that for all n < N we have |i(x(n))− i(x ′(n))| < 1/k. Since
i : Q → S is an order isomorphism by Theorem 2.3.1, for all n > N we
have |x(n)− x ′(n)| < 1/k.
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Theorem 2.3.3. Uniqueness of the Complete Ordered Field, R

Theorem 2.3.3 (continued 3)

Proof (continued). Since R is Archimedean by Theorem 2.1.A then
limn→∞(x(n)− x ′(n)) = 0 or {x(n)− x ′(n)}∞n=1 is a null sequence and so,
by the definition of equivalent sequences of rational numbers, x ∼ x ′ or
x = x′. Hence, i is one to one.

We now show that i is onto. Let s ∈ S . Since SQ is dense in S by
Theorem 2.3.2, there is a sequence of rational in S that converge to S (for
each k ∈ N there is q(k) ∈ SQ in the interval (s − 1/k, s + 1/k) and the
sequence {q(k)} → s). Since i maps Q onto SQ (this is the definition of
SQ), then there are rationals p(k) ∈ Q such that i(p(k)) = q(k). Then
{p(k)}∞k=1 is a Cauchy sequence of rational numbers (similar to the
argument above in the proof that i is one to one). The real number x
which the equivalence class containing {p(k}∞k=1 is mapped by i to s,
i(x) = s. Therefore, i is onto.
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Theorem 2.3.3. Uniqueness of the Complete Ordered Field, R

Theorem 2.3.3 (continued 4)

Theorem 2.3.3. Every order complete ordered field is isomorphic to R
(where we take R to be the complete ordered field of equivalence classes
of Cauchy sequences of rational numbers).

Proof (continued). Now, to establish that i is a field isomorphism. Let x
and y be real numbers, and let {x(n)}∞n=1 be a representative of x and let
{y(n)}∞n=1 be a representative of y. Then {x(n) + y(n)}∞n=1 is a
representative of x + y. So

i(x + y) = lim
n→∞

i(x(n) + y(n))

= lim
n→∞

(i(x(n)) + i(y(n))) since i : Q → S is a field

isomorphism by Theorem 2.3.B

= lim
n→∞

i(x(n)) + lim
n→∞

i(y(n)) since both limits exist,

as shown above when i is defined

= i(x) + i(y) by the definition of i .
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Theorem 2.3.3. Uniqueness of the Complete Ordered Field, R

Theorem 2.3.3 (continued 5)

Proof (continued). Also, {x(n)y(n)}∞n=1 is a representation of xy. So

i(xy) = lim
n→∞

i(x(n)y(n))

= lim
n→∞

i(x(n)) lim
n→∞

i(y(n)) since i : Q → S is a field

isomorphism by Theorem 2.3.B

= lim
n→∞

i(x(n)) lim
n→∞

i(y(n)) since both limits exist

= i(x)i(y) by the definition of i .

Therefore i is a field isomorphism.

Finally, we show that i is an order isomorphism. Let x ∈ R be positive and
let {x(n)}∞n=1 be a representative of x. Then (by definition of positive real
number) there are natural numbers M and N where for n > N we have
x(n) > 1/M. Since i : Q → S is an order isomorphism then
i(x(n)) > 1S/i(M) > 0S for n > N. So
i(x) = limn→∞ i(x(n)) ≥ 1S/i(M) > 0S , and i(x) is positive.
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Theorem 2.3.3 (continued 5)
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Theorem 2.3.3. Uniqueness of the Complete Ordered Field, R

Theorem 2.3.3 (continued 6)

Theorem 2.3.3. Every order complete ordered field is isomorphic to R
(where we take R to be the complete ordered field of equivalence classes
of Cauchy sequences of rational numbers).

Proof (continued). If x < 0 then −x > 0 and we now have
i(−x) > i(0) = 0S Since i(−x) = −i(x) (because i is a field
isomorphism), so −i(x) > 0 and i(x) < 0. Therefore x ∈ R is positive if
and only if i(x) ∈ S is positive. So i is an order isomorphism. That is,
i : R → S is a field and order isomorphism.

Since S is an arbitrary order complete ordered field, then every order
complete ordered field is isomorphic to R, as claimed.
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