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1.2. Properties of the Real Numbers as an

Ordered Field.

Note. In this section we give eight axioms related to the definition of the real

numbers, R. All properties of sets of real numbers, limits, continuity of functions,

integrals, and derivatives will follow from this definition. we start with some ma-

terial from Introduction to Modern Algebra (MATH 4127/5127).

Note 1.2.A. If you have already taken Introduction to Modern Algebra, then you

have been exposed to the following. (If you have not yet taken it, it is probably in

your near future!) These definitions can be found in my online notes for Introduc-

tion to Modern Algebra:

Definition 18.1. A ring 〈R, +, ·〉 is a set R together with two binary operations

+ and ·, called addition and multiplication, respectively, defined on R such that:

R1: 〈R, +〉 is an abelian group.

R2: Multiplication · is associative: (a · b) · c = a · (b · c) for all a, b, c ∈ R.

R3: For all a, b, c ∈ R, the left distribution law a · (b + c) = (a · b) + (a · c) and the

right distribution law (a + b) · c = (a · c) + (b · c) hold.

Definition 18.14. A ring in which multiplication is commutative (i.e., ab = ba for

all a, b ∈ R) is a commutative ring. A ring with a multiplicative identity element

is a ring with unity.

https://faculty.etsu.edu/gardnerr/4127/notes.htm
https://faculty.etsu.edu/gardnerr/4127/notes.htm
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Definition 18.16. Let R be a ring with unity 1 6= 0. An element u ∈ R is a unit

of R if it has a multiplicative inverse in R. If every nonzero element of R is a unit,

then R is a division ring. A field is a commutative division ring.

In this class, we are interested in the field of real numbers (in Complex Variables

[MATH 4337/5337] you are interested in the field of complex numbers), so we

abbreviate the above information and give a more concise definition of a field.

Definition. A field F is a nonempty set with two operations + and · called addition

and multiplication, such that the following axioms hold:

(A1) If a, b ∈ F then a + b and a · b are uniquely determined elements of F (i.e., +

and · are binary operations).

(A2) If a, b, c ∈ F then (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c) (i.e., +

and · are associative).

(A3) If a, b ∈ F then a + b = b + a and a · b = b · a (i.e., + and · are commutative).

(A4) If a, b, c ∈ F then a · (b + c) = a · b + a · c (i.e., · distributes over +).

(A5) There exists 0, 1 ∈ F (with 0 6= 1) such that 0 + a = a and 1 · a = a for all

g ∈ F.

(A6) If a ∈ F then there exists −a ∈ F such that a + (−a) = 0.

(A7) If a ∈ F a 6= 0, then there exists a−1 such that a · a−1 = 1.

0 is the additive identity, 1 is the multiplicative identity, −a and a−1 are inverses

of a.
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Note 1.2.B. As mentioned earlier (see Note 1.1.F in Section 1.1. Sets and Func-

tions), there are “no such things” as subtraction and division! As opposed to

subtraction we have the addition of additive inverses, and as opposed to division

we have the multiplication by multiplicative inverses. Evidence for this follows

from Note 1.2.A where we see that a ring only has TWO binary operations. This

technicality will not stop us from using the terms “subtract” and “divide” or the

symbols for these procedures, however.

Example. Some examples of fields include:

1. The rational numbers Q = {p/q | p, q ∈ Z, q 6= 0}.

2. The rationals extended by
√

2: Q[
√

2] = {q1 + q2
√

2 | q1, q2 ∈ Q}.

3. The algebraic numbers A = {x ∈ R | p(x) = 0 for some polynomial with

integer coefficients}.

4. The real numbers R.

5. The complex numbers C = {r1 + ir2 | r1, r2 ∈ R, i2 = −1}.

6. The integers modulo p where p is prime Zp.

Another “interesting” field is the field of constructible numbers. A real number

r is constructible if, starting with a given line segment which is defined to be of

length 1, a line segment of length |r| can be constructed with a compass and

straight edge in the plane. For more on compass and straight edge constructions,

my History of Mathematics (MATH 3040) notes on Section 4.4. The Euclidean

Tools, where compass ans straight edge constructions are tied to Euclid’s approach

https://faculty.etsu.edu/gardnerr/4217/notes/1-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-1.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-4-4.pdf
https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-4-4.pdf
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to geometry in his Elements. The constructible numbers are shown to form a field

in Introduction to Modern Algebra (MATH 4127/5127); see Corollary 32.5 in my

online notes for that class on Section VI.32. Geometric Constructions.

Note. In the next two theorems, uniqueness of identities and inverses is shown. A

common approach to showing uniqueness of an object is to assume that two such

objects exist and then showing that the two objects are equal.

Theorem 1-3. For F a field, the additive and multiplicative identities are unique.

Theorem 1-4. For F a field and a ∈ F, the additive and multiplicative inverses of

a are unique.

Note. In the next two theorems, some properties of the interaction of addition and

multiplication in a field are proved. Notice that in Theorem 1-6(c) it is shown that

an additive inverse of a times an additive inverse of b equals ab. To paraphrase

(or, arguably, to oversimplify), “the product of two negatives is positive” (if we

overlook the fact that we haven’t yet defined “positive” or “negative”; in fact, such

an idea does not hold in all fields).

Theorem 1-5. For F a field, a · 0 = 0 for all a ∈ F.

https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
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Theorem 1-6. For F a field and a, b ∈ F:

(a) a · (−b) = (−a) · b = −(a · b).

(b) −(−a) = a.

(c) (−a) · (−b) = a · b.

Note. We add another axiom in our development of the real numbers. As an

axiom, it is called “The Axiom of Order.” It allows us to to define an idea of

greater than and less than in certain fields.

Axiom 8/Definition of Ordered Field. A field F is said to be ordered if there

is P ⊂ F (called the positive subset) such that

(i) If a, b ∈ P then a + b ∈ P (closure of P under addition).

(ii) If a, b ∈ P then a · b ∈ P (closure of P under multiplication).

(iii) If a ∈ F then exactly one of the following holds: a ∈ P , −a ∈ P , or a = 0

(this is The Law of Trichotomy).

Note. Some examples of ordered fields are Q, Q[
√

2], A, and R. In each case, the

positive subset is the set of elements of each field which is greater than 0. Examples

of fields that are not ordered fields are C and Zp. A proof that C is not ordered

is given in my online notes for Complex Analysis 1 (MATH 5510) on Supplement.

Ordering the Complex Numbers. The positive set is used to define an ordering as

follows.

https://faculty.etsu.edu/gardnerr/5510/Ordering-C.pdf
https://faculty.etsu.edu/gardnerr/5510/Ordering-C.pdf
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Definition. Let F be a field and P the positive subset. We say that a < b (or

b > a) if b− a ∈ P . We call < and > the order on F.

Exercise 1.2.5. If F is an ordered field, a, b ∈ F with a ≤ b and b ≤ a then a = b.

Note. The next theorem gives several properties concerning the interaction of the

order with addition and multiplication. Notice that what is proved here (and much

of what has been previously proved) is valid for general fields or ordered fields. We

are progressing towards R, but we are currently considering a more general setting.

In fact, we have not yet defined the real numbers.

Theorem 1-7. Let F be an ordered field. For a, b, c ∈ F:

(a) If a < b then a + c < b + c.

(b) If a < b and b < c then a < c (“<” is transitive).

(c) If a < b and c > 0 then ac < bc.

(d) If a < b and c < 0 then ac > bc.

(e) If a 6= 0 then a2 = a · a > 0.

Note. We can use the order on an ordered field to define an interval. This is done

in Precalculus 1 (Algebra) (MATH 1710); see my online notes for Precalculus 1

(Algebra) on Supplement A.9. Interval Notation; Solving Inequalities. It is also

https://faculty.etsu.edu/gardnerr/1710/notes-Precalculus-10/Sullivan10-A-9.pdf


1.2. The Real Numbers, Ordered Fields 7

covered in Calculus 1 (MATH 1910); see my online Calculus 1 notes on Appendix

A.1. Real Numbers and the Real Line and notice Table A.1. We repeat this here

in the following definition and note.

Definition. An interval of real numbers is a set A containing at least two numbers

such that if r, s ∈ A with r < s and it t is a number such that t < t < s, then

t ∈ A. A set consisting of a single point is not an interval, but is sometimes called

a degenerate interval.

Note. Intervals of real numbers fall into the following categories:

R = (−∞,∞)

(i) (a, b) = {x | a < x < b} (v) (−∞, a) = {x | x < a}

(ii) [a, b] = {x | a ≤ x ≤ b} (vi) (−∞, a] = {x | x ≤ a}

(iii) [a, b) = {x | a ≤ x < b} (vii) (a,∞) = {x | x > a}

(iv) (a, b] = {x | a < x ≤ b} (viii) [a,∞) = {x | x ≥ a}

where a < b. Intervals of types (i), (v), and (vii) are open intervals, and intervals

of types (ii), (vi), and (viii) are closed intervals. The interval (−∞,∞) is both

open and closed.

Note 1.2.C. We assume the usual laws of arithmetic. The axiomatic justification

of the properties of addition of natural numbers (and hence of integers) are based

on a set theoretic development of N. This is given in an Introduction to Set

Theory class. ETSU has no such class, but I have some preliminary notes posted

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A1-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A1-14E.pdf
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for an Introduction to Set Theory class. The addition of rational numbers in terms

of common denominators is justified in Introduction to Modern Algebra (MATH

4217/5217) in Section IV.21. The Field of Quotients of an Integral Domain. The

multiplication of integers and rational numbers is justified in terms of repeated

addition. We assume that the usual laws of exponents are valid, such as xa+b =

xa · xb and xa−b = xa/xb. For a, b ∈ Z this follows from the definition xa, xb, xa+b,

and xa−b and is established in Modern Algebra 1 (MATH 5410) in Section I.1.

Semigroups, Monoids, and Groups (see Theorem I.1.9).

Note. The existence of roots of real numbers is not something that can be proved

with the information we have at this stage. The next theorem claims the existence

of an nth root of a positive real number. We accept it for now and use it to prove

some properties of positive real numbers to a rational power. In Section 1.3. The

Completeness Axiom, we add an additional axiom to the definition of the real

numbers and use this axiom to justify the next theorem.

Theorem 1-8. Let x be a positive real number and let n be a positive integer.

Then there is a unique positive number y such that yn = x.

Note. Theorem 1-8 allows to take nth roots of positive real numbers, where n ∈ N.

We can then use this to define exponentiation of any positive real number, where

the exponent is rational. We give this definition formally next, and define expo-

nentiation of positive real numbers with irrational exponents in the next section.

https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes.htm
https://faculty.etsu.edu/gardnerr/4127/notes/IV-21.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/I-1.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/I-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
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Definition. Let x be a positive real number and n ∈ N. Then we define x1/n =

n
√

x as the unique positive real number y, given in Theorem 1-8, such that yn =

(x1/n)n = x. Positive real number x1/n is called the nth root of x. If p and q are

positive integers, then we define xp/q = (x1/q)p.

Note. The next two theorems give the behavior of the interaction of inequalities

and exponentiation with rational exponents. The proof of Theorem 1-9 is to be

given in Exercise 1.2.10.

Theorem 1-9. Let x be a positive real number, and let s1 and s2 be positive

rational numbers where s1 < s2. Then

(a) xs1 < xs2 if x > 1.

(b) xs1 > xs2 if 0 < x < 1.

Theorem 1-10. Let x and y be positive real numbers with x < y and let s be a

positive rational number. Then xs < ys.

Note. The next exercise gives several properties of the order in an ordered field.

These properties are then used to prove Theorem 1-10.



1.2. The Real Numbers, Ordered Fields 10

Exercise 1.2.7. Prove:

(a) 1 > 0.

(b) If 0 < a < b then 0 < 1/b < 1/a.

(c) If 0 < a < b then an < bn for natural number n.

(d) If a > 0, b > 0 and an < bn for some natural number n, then a < b.

(e) For any real numbers a and b, we have |a| ≤ |b| if and only if a2 ≤ b2.

(f) Prove Theorem 1-10.

Note. You are familiar with mathematical induction from Mathematical Reason-

ing (MATH 3000), and possibly from Calculus 1 (MATH 1910). See my online

notes for Calculus 1 on Appendix A.2. Mathematical Induction, and for Mathe-

matical Reasoning on Section 2.10. Mathematical Induction and Recursion. We

briefly state the Principle of Mathematical Induction here, for reference.

Principle of Mathematical Induction. Suppose that for each n ∈ N there is a

statement P (n). Suppose that

(i) P (1) is true.

(ii) For any k ∈ N, if P (K) is true, then P (k + 1) must be true.

Then P (n) is true for every n ∈ N.

Note. We will prove (by induction) the Binomial Theorem. We need a preliminary

result first. It involves the binomial coefficients

(
m

j

)
=

m!

j!(m− j)!
.

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A2-14E.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-10.pdf
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Theorem 1-11. For m, j ∈ N with j ≤ m we have(
m

j

)
+

(
m

j − 1

)
=

(
m + 1

j

)
.

Theorem 1-12. The Binomial Theorem.

Let a and b be real numbers and let m ∈ N. Then

(a + b)m =
m∑

j=0

(
m

j

)
ajbm−j.

Note. We conclude this section by defining the absolute value function on R.

This plays a fundamental role in this class (as it did in calculus) since we use it to

measure distance in R.

Definition. For a ∈ R, the absolute value of a is

|a| =

 a if a ≥ 0

−a if a < 0.

Note. The properties of the absolute value function are summarized in the next

theorem. Part (h) is particularly important in out use of it to measure distance.

The remaining parts are to be proved in Exercises 1.2.13 and 1.2.14.
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Theorem 1-13. For all a, b ∈ R

(a) |a| ≥ 0 with equality if and only if a = 0.

(b) |a| = | − a|.

(c) −|a| ≤ a ≤ |a|.

(d) |ab| = |a| · |b|.

(e) 1/|b| = |1/b| if b 6= 0.

(f) |a/b| = |a|/|b| if b 6= 0.

(g) |a| < |b| if and only if −b < a < b.

(h) |a + b| ≤ |a|+ |b| (this is the Triangle Inequality).

(i) ||a| − |b|| ≤ |a− b|.

Note. We measure the distance between two points in a set using a “metric.”

A set with a metric on it is a “metric space.” These are a central topic in the

study of analysis. These topics are covered in Introduction to Topology (MATH

4357/5357) in Section 20. The Metric Topology and Section 21. The Metric Topol-

ogy (continued), in graduate Real Analysis 2 in Chapter 9, Metric Spaces: General

Properties, and Chapter 10, Metric Spaces: Three Fundamental Theorems; see my

in online notes for Real Analysis 2, and in graduate Complex Analysis 1 in Chapter

II, Metric Spaces and the Topology of C, see my online notes for Complex Analysis

1. We now give a formal definition of a “metric” on a set.

https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-20.pdf
https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-21.pdf
https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-21.pdf
https://faculty.etsu.edu/gardnerr/5210/notes2.htm
https://faculty.etsu.edu/gardnerr/5510/notes.htm
https://faculty.etsu.edu/gardnerr/5510/notes.htm
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Definition. Let X be a set and d a function d : X ×X → R satisfying

(i) d(a, b) ≥ 0 for all a, b ∈ X and d(a, b) = 0 if and only if a = b.

(ii) d(a, b) = d(b, a).

(iii) d(a, c) ≤ d(a, b) + d(b, c) (this is the Triangle Inequality).

Function d is then called a metric on X.

Note. A metric on R based on absolute value is d(x, y) = |x− y|. This is because

d : R× R → R and for all a, b, c ∈ R we have:

(i) d(a, b) = |a− b| ≥ 0, and d(a, b) = |a− b| = 0 if and only if a = b by Theorem

1-13(a),

(ii) d(a, b) = |a− b| = | − (a− b)| = |b− a| = d(b, a) by Theorem 1-13(b), and

(iii) by Theorem 1-13(h), the Triangle Inequality of absolute value,

d(a, c) = |a− c| = |(a− b)− (b− c)| ≤ |a− b|+ |b− c| = d(a, b) + d(b, c).

Note. Examples of metrics on X = R2 include the

(a) The Euclidean metric dE((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2, and

(b) the taxicab metric dt((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

Notice that the Euclidean metric on R2 is simply the distance formula with which

you are familiar. It is to be shown that both of these actually are metrics in Exercise

1.2.A.
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