
2.1. Sequences of Real Numbers 1

Chapter 2. Sequences of Real Numbers

2.1. Sequences of Real Numbers

Note. In this section we define a sequence of real numbers and the limit of a

sequence. We prove several properties sequences. We start with the definition of a

sequence and the definition of the limit of a sequence, which are the same as those

seen in Calculus 2 (MATH 1920); see my online notes for Calculus 2 on Section

10.1. Sequences.

Definition. A sequence of real numbers is a function from N into R. We denote

the sequence as {f(1), f(2), . . .} (notice that order matters) {f(n)}∞n=1 = {f(n)} =

{fn} or “f(1), f(2), . . ..” The numbers f(1), f(2), f(3), . . . are the terms of the

sequence, with f(n) as the nth term. Two sequences {fn} and {gn} are equal if

they are equal term by term (that is, f(n) = fn = gn = g(n) for all n ∈ N).

Example 2.2. The sequence 2, 4, 6, 8, . . . or {2, 4, 6, 8, . . .} may be represented as

{2n} = {2n}∞n=1. Similarly, when f(n) is easily expressed as a formula, we may

represent the sequence by the formula.

Definition. We say that {xn}∞n=1 converges to L if for all ε > 0 there exists

N(ε) ∈ N such that for all n > N(ε), we have |xn − L| < ε. L is called the limit

of the sequence and we write lim(xn) = L or {xn} → L. If a sequence does not

converge, it diverges.

https://faculty.etsu.edu/gardnerr/1920/12/c10s1.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c10s1.pdf
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Note 2.1.A. The idea behind this definition is that you start with a positive

distance as small as you like, ε. Then I can find a natural number, N(ε), such that

when we go out the sequence beyond the N(ε) position, the terms will be within

the distance you chose of the limit value L. That is, for any given small positive

distance ε, the terms of the sequence are eventually (beyond N(ε) in the sequence)

within that distance of the limit value L. Notice that there is no idea of the terms

getting “closer and closer” to L. Limits are more subtle than this. An idea of

closeness (in the form of ε > 0) is involved, but not an idea of closer and closer.

Another informal ideas is that the terms of the sequence “get close to” L (within

ε > 0) and stay close of L (for all n > N(ε).

Note 2.1.B. By the way, Kirkwood requires that N(ε) is a natural number, but

we could replace this requirement with: “N(ε) is a positive real number.” After

all, if N(ε) is a positive real number then we can round it up to dN(ε)e to get a

natural number.
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Example 2.1.A. Prove

{
1

n

}∞

n=1
→ 0.

Example 2.4. Prove that {xn} = {2− 1/n2} has a limit of 2.

Note. Recall that a sequence is divergent if it is not convergent. We now consider

two special types of divergence.

Definition. A sequence of real numbers {xn} is said to diverge to infinity is given

any number M , there exists N(M) ∈ N such that for all n > N(M) we have

xn > M . We write lim xn = ∞ or {xn} → ∞. A sequence of real numbers {xn} is

said to diverge to negative infinity is given any number K, there exists N(K) ∈ N

such that for all n > N(K) we have xn < K. We write lim xn = ∞ or {xn} → −∞.

Example 2.6. Prove that {xn} = {n2} diverges to ∞.

Theorem 2-1. A sequence of real numbers can converge to at most one number.

Theorem 2-2. The sequence of real numbers {an} converges to L if and only if

for all ε > 0, all but a finite number of terms of {an} lie in (L− ε, L + ε).

Definition. A sequence is bounded if the terms of the sequence form a bounded

set.
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Note. Boundedness of a sequence will be a recurring theme in our study of se-

quences. We start by showing that convergent sequences are bounded.

Theorem 2-3. If {an} is a convergent sequence of real numbers, then the sequence

{an} is bounded.

Definition. If {an} and {bn} are sequences of real numbers, define {an + bn} to be

the sequence whose nth term is an + bn, define {anbn} as the sequence whose nth

term is abnn and if bn 6= 0 for all n ∈ N, define {an/bn} as the sequence whose nth

term is an/bn. For c ∈ R, define c{an} = {can} as the sequence whose nth term is

can.

Theorem 2-4. Suppose {an} and {bn} are sequences with {an} → a and {bn} → b.

Then

(a) {an + bn} → a + b.

(b) {can} → ca for any c ∈ R.

(c) {anbn} → ab.

(d) If b 6= 0 and bn 6= 0 for all n ∈ N, then {an/bn} → a/b.

Note. The proof of part (b) of Theorem 2-4 is to be given in Exercise 2.1.7. The

proof of the next theorem is to be given in Exercises 2.1.8 and 2.1.9. In the proof of
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Theorem 2-4(c), we established the inequality |anbn−ab| ≤ |an||bn− b|+ |b||an−a|.

We needed to chose N(ε) such that the quantity on the right is less than ε. The

plan is to make each of the two quantities in the sum less than ε/2. The second term

involves |an − a| and, since {an} → a then this can be made “small” by making n

“large.” So we choose Na(ε) such that for n > Na(ε) we have |an−a| < ε/(2|b|+1)

(the “+1” is included in case b = 0). Then

|b||an − a| < |b|
(

ε

2|b|+ 1

)
=

(
|b|

2|b|+ 1

)
ε <

ε

2
.

The first term involves |bn − b| and, since {bn} → b then this can be made “small”

by making n “large. The problem is that the variable term |an| is in the way, so

we need some idea of its size. Since |an| is convergent, then it is bounded, say by

M > 0. So we choose Nb(ε) such that for n > Nb(ε) we have |bn − b| < ε/(2M).

Then

|an||b− bn| < M
( ε

2M

)
=

ε

2
.

To get both of these to hold, we choose N = max{Na(ε), Mb(ε)}. A similar ap-

proach is taken in the proof of Theorem 2-4(d) where we deal with the inequality∣∣∣∣an

bn
− a

b

∣∣∣∣ ≤ 1

|bn|
|an − a|+ |a|

|bnb|
|b− bn|.

The details are given in Kirkwood as to the specific choices of Na(ε) and Nb(ε).

Theorem 2-5.

(a) Suppose {an} → L and an ≤ K for all n ∈ N. Then L ≤ K.

(b) Suppose {an}, {bn} satisfy an ≤ bn for all n ∈ N. Also suppose {an} → L,

{bn} → K. Then L ≤ K.
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(c) If {an}, {bn} satisfy 0 ≤ an ≤ bn for all n ∈ N and if {bn} → 0, then {an} → 0.

(d) If {an}, {bn}, {cn} satisfy an ≤ bn ≤ cn for all n ∈ N, and {an} → L, {cn} → L,

then {bn} → L.

Definition. Let {an} be a sequence. If an+1 ≥ an (an ≥ an+1) for all n ∈ N, the

sequence is monotone increasing (decreasing). If the inequalities are strict for all

n ∈ N, then the sequence is strictly monotone increasing (decreasing). Any of these

types of sequences is called a monotone sequence.

Theorem 2-6. A bounded monotone sequence converges.

Corollary 2-6.

(a) A monotone increasing sequence either converges or diverges to ∞.

(b) A monotone decreasing sequence either converges or diverges to −∞.

Example 2.9. Prove that the sequence {xn} = {(1 + 1/n)n} is monotone increas-

ing.

Theorem 2-7. Let An = [an, bn] be a sequence of nested intervals, An ⊃ An+1

for all n ∈ N. Suppose limn→∞(bn − an) = 0. Then there exists p ∈ R such that

∩∞n=1An = {p}.
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Note/Defintion. A proof of Theorem 2-7 is to be given in Exercise 2.1.12. A

sequence of sets {An} such that An ⊃ An+1 is a nested sequence of sets.

Theorem 2-8. Let A be a nonempty set of real numbers bounded above. Then

there is a sequence {xn} such that (i) xn ∈ A for all n ∈ N, and (ii) {xn} → lub(A).

Note. A result similar to Theorem 2-8 also holds for the greatest lower bound of

a set bounded below:

Let A be a nonempty set of real numbers bounded below. Then there

is a sequence {xn} such that (i) xn ∈ A for all n ∈ N, and (ii) {xn} →

glb(A).

Definition. A sequence {an} is a Cauchy sequence if for all ε > 0, there exists

N(ε) such that if n, m > N(ε) then |an − am| < ε.

Note 2.1.C. Cauchy sequences will play a huge role in this chapter. The theoretical

importance of Cauchy sequences is that they make no appeal to anything outside

of the sequence, but merely address a property of the terms of the sequence itself.

Notice that in the definition of convergence, by contrast, the role of the limit of

the sequence may or may not be an element of the sequence. We’ll apply Cauchy

sequences of rational numbers when showing the uniqueness a complete ordered
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field in Supplement. The Real Numbers are the Unique Complete Ordered Field.

In fact, completeness is usually addressed in terms of Cauchy sequences when an

ordering is not present (and there is no concept of least/greatest or lower/upper).

This is the case in complex analysis (see my online notes for Complex Analysis 1

[MATH 5510] on Section I.3. The Complex Plane and notice Note 1.3.D), and in

metric spaces (see my online notes for Introduction to Topology [MATH 4357/5357]

on Section 43. Complete Metric Spaces, and Real Analysis 2 [MATH 5220] on

Section 9.4. Complete Metric Spaces). In Exercises 2.3.13 and 2.3.14 of Section

2.3. Bolzano-Weierstrass Theorem a proof of the following is to be given.

Theorem 2-9. A sequence converges if and only if it is Cauchy.

Note 2.1.D. The ideas of continuity and a continuum are old. The first attempt at

a formal definition of continuity was given in 1817 by Bernhard Bolzano (October

5, 1781–December 18, 1848) in a pamphlet in which he was trying to prove the

Intermediate Value Theorem; the pamphlet was in German and the title translates

as Purely analytic proof of the theorem that between any two values which give

results of opposite sign, there lies at least one real root of the equation). In this,

Bolzano was critical of the “common sense” approaches to continuity of the time.

In Sections 6 and 7 of the pamphlet he tries to prove that Cauchy sequences (which

he describes independently from Cauchy) converge. (He is actually considering a

series, but the convergence of a series is addressed in terms of convergence of the

https://faculty.etsu.edu/gardnerr/4217/notes/Real-Unique.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/I-3.pdf
https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-43.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/9-4.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
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sequence of partial sums.) He introduces a new assumption of the existence of

a quantity X to which the terms of the sequence approach as closely as wanted.

He claimed this hypothesis “contains nothing impossible,” but it is what he was

trying to prove. Without some new hypothesis (namely, completeness in one form

or another), the proof could not be correct. Augustin Cauchy (August 21, 1789–

May 23, 1857) published his Cours d’analyse in 1821. It was for the students at

École Polytechnique and was an attempt to put calculus on a rigorous foundation.

In addressing series (and the associated sequences of partial sums) he assumed

that “Cauchy sequences” converge and stated that the property of being a Cauchy

sequence was “a self evident necessary and sufficient condition” for convergence.

In other words, he assumed these sequences converged! In fact, the convergence

of Cauchy sequences in an ordered field (along with the Archimedean Principle,

Theorem 1-18) is equivalent to the Axiom of Convergence we used in terms of upper

bounds and least upper bounds; this is shown in Theorem 1.4.3 of Supplement.

The Real Numbers are the Unique Complete Ordered Field. This note is based

on Jacquleine Stedall’s Mathematics Emerging: A Sourcebook 1540–1900 (Oxford

University Press, 2008), pages 306, 495, 496, and 500. This also includes Sections

1, 3, and 4 of Cours d’analyse (in French) and an English translation. It would be

Richard Dedekind (October 6, 1831–February 12, 1916) who introduced the idea

of a “Dedekind cut” (in 1858, but not published until 1872) as an axiom and it is

from this point that the real numbers were clearly defined axiomatically. Dedekind

cuts can be used to prove that Cauchy sequences converge and that sets of real

numbers with an upper bound have a least upper bound. That is, Dedekind cuts

can be used to establish the completeness of the real numbers (and conversely).

https://faculty.etsu.edu/gardnerr/4217/notes/Real-Unique.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/Real-Unique.pdf
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These images of Bernhard Bolzano and Augustin Cauchy are from the Bolzano

biography webpage and the Cauchy biography webpage of the MacTutor History

of Math website (accessed 11/26/2023).
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https://mathshistory.st-andrews.ac.uk/Biographies/Bolzano/
https://mathshistory.st-andrews.ac.uk/Biographies/Bolzano/
https://mathshistory.st-andrews.ac.uk/Biographies/Cauchy/

