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2.3. Bolzano-Weierstrass Theorem

Note. In this section we show that every bounded set of real numbers has a “limit

point” in the Bolzano-Weierstrass Theorem (Theorem 2-12). We define “limit

superior” and “limit inferior” of a sequence, and relate these to limit points of the

set of terms of the sequence. We also give a proof of Theorem 2-9 from Section

2.1. Sequences of Real Numbers, which claims that a sequence of real numbers is

Cauchy if and only if it converges.

Definition. A real number x is a limit point of a set of real numbers A is for all

ε > 0, the interval (x− ε, x + ε) contains infinitely many points of A.

Note. Of course, a finite set has no limit points. An infinite set may not have a

limit point; consider for example Z. Notice that A = (0, 1) has every one of its

elements as a limit point, as well as limit points 0 and 1. The Bolzano-Weierstrass

Theorem gives a condition under which a set must have at least one limit point.

Theorem 2-12. Bolzano-Weierstrass Theorem.

Every bounded infinite set of real numbers has at least one limit point.

Note 2.3.A. We mentioned Bernhard Bolzano (October 5, 1781–December 18,

1848) in Section 2.1. Sequences of Real Numbers in connection with the conver-

gence of Cauchy sequences (see Note 2.1.D). In E. T. Bell’s Men of Mathematics (Si-
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mon and Schuster, 1937) (see my History of Mathematics [MATH 3040] on Section

3.2. Pythagoras and the Pythagoreans for some commentary on Men of Mathemat-

ics, including the “non-modern” title; see Note 3.2.A), Karl Wilhelm Weierstrass

(October 31, 1815–February 19, 1897) is described as “conclusive” evidence that

someone devoted to teaching can still make accomplishments in mathematics. In

Berlin, in the process of lecturing on introductory analysis (presumably, covering

material very similar to the content of our class) in 1859–60, he addressed the

foundations of analysis for the first time. He followed this up in 1860–61 with lec-

tures on integration theory. In 1863–64 he taught a course on the general theory

of analytic functions and began to formulate his theory of the real numbers. As

part of his rigorous approach, he defined irrational numbers as limits of convergent

series. We’ll see a similar approach taken in Supplement. The Real Numbers are

the Unique Complete Ordered Field. Though he did not publish a lot, Weierstrass

is often called the “father of modern analysis.”

This biographical information and the image above are from the MacTutor biogra-

phy webpage on Weierstrass (accessed 12/1/2023).
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Note. The next result, a classification of subsequential limits in terms of limit

limit points of the set of terms of the sequence, is an application of the Bolzano-

Weierstrass Theorem (Theorem 2-12). Its proof is to be given in Exercise 2.3.1.

Theorem 2-13. Let {an} be a sequence. Then L is a (finite) subsequential limit

of {an} if and only if L satisfies either of the following:

(i) There are infinitely many terms of {an} equal to L, or

(ii) L is a limit point of a set consisting of the terms of {an}.

Note. The next result gives a sufficient condition which gives a condition for a

sequence to have a convergent subsequence (though the condition is not necessary).

Theorem 2-14. Every bounded sequence has a convergent subsequence.

Note. The next result suggests that we can include +∞ and −∞ as subsequential

limits (though often when we refer to a “subsequential limit” we are referring to

the limit of a subsequence, and subsequences that have limits of +∞ or −∞ are

said to be divergent). See Note 2.2.B of Section 2.2. Subsequences for more on this.

A proof of part (b) of the next result is to be given in Exercise 2.3.4.
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Theorem 2-15.

(a) A sequence that is unbounded above has a subsequence that diverges to +∞.

(b) A sequence that is unbounded below has a subsequence that diverges to −∞.

Note. The following theorem gives another classification of convergent sequences.

Theorem 2-16. A sequence {an} converges if and only if it is bounded and has

exactly one subsequential limit.

Note. We introduce one final parameter related to subsequences of a given se-

quence. You will see a lot on this parameter in your study of analysis. For example,

it is used to define the radius of convergence of a power series in Section 8.2. Series

of Functions. This is also the case in the complex setting; see my online notes for

Complex Analysis 1 (MATH 5510) on Section III.1. Power Series (notice Theorem

III.1.3).

Definition. Let {an} be a sequence of real numbers. Then lim sup an = lim an is

the least upper bound of the set of subsequential limits of {an}, and lim inf an =

lim an is the greatest lower bound of the set of subsequential limits of {an}.

Note 2.3.B. By using least upper bounds and greatest lower bounds in the previous

definition, we are guaranteed that lim sup an = lim an and lim inf an = lim an exist
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for all sequences of real numbers {an}. Of course, these might be −∞ or +∞,

however. In Complex Analysis 1 (MATH 5510), for sequence {an} of real numbers,

lim sup an = lim an and lim inf an = lim an are defined as:

lim an = lim
n→∞

(inf{an, an+1, . . .}) and lim an = lim
n→∞

(sup{an, an+1, . . .}) .

This is equivalent to our definition and explains the terminology “lim inf an” and

“lim sup an.”

Example 2.3.A. Consider {an} = {sin n} (n in radians). Then lim an = −1 and

lim an = 1. The proof of this claim is not trivial. A recent graduate of the ETSU

Mathematical Sciences Master’s Program, Abderrahim Elallam, presented a proof

of this in his thesis Constructions & Optimization in Classical Real Analysis The-

orems (May 2021). In his Section 2.3, “Constructions in the Bolzano-Weierstrass

Theorem,” he proved:

Proposition 2.1. For every α ∈ [−1, 1] there is a subsequence {xnk
} of {xn = n}

such that limk→∞ sin(xnk
) = α.

He lists as a reference for this result G. H. Hardy and E. M. Wright’s An Intro-

duction to the Theory of Numbers (Oxford University Press, 1981). You can see

Mr. Elallam’s thesis online through the Digital Commons @ East Tennessee State

University (accessed 9/18/2023).

Exercise 2.3.16. Let {an} be a sequence.

(a) Then lim sup an = lim an is a subsequential limit of {an}, and

(b) lim inf an = lim an is a subsequential limit of {an}.

https://dc.etsu.edu/etd/3901/
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Note 2.3.C. Exercise 2.3.16, gives us an easier way to recognize lim an and lim an;

they are simply the greatest and least, respectively, subsequential limits (allowing

for the possibility of +∞ and −∞). We leave the proof of part (b) of Exercise

2.3.16 ad homework.

Note. The next result gives an ε condition that classifies lim an and lim an. A

proof of part (b) of the result is to be given in Exercise 2.3.7.

Theorem 2-17. Let {an} be a bounded sequence. Then

(a) lim an = L if and only if for all ε > 0, there exists infinitely many terms of

{an} in (L− ε, L + ε) but only finitely many terms of {an} with an > L + ε.

(b) lim an = K if and only if for all ε > 0, there exists infinitely many terms of

{an} in (K − ε, K + ε) but only finitely many terms of {an} with an < K − ε.

Note. The next corollary should not be surprising, at this stage.

Corollary 2-17. A bounded sequence {an} converges if and only if lim an = lim an.

Note. The familiar summation property of convergent sequence (see Theorem 2-4

in Section 2.1. Sequences of Real Numbers) does not translate directly over to lim

and lim; an inequality is necessary. Part (b) of the next result, concerning lim and

lim of a sum, is to be given in Exercise 2.3.8.

https://faculty.etsu.edu/gardnerr/4217/notes/2-1.pdf
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Theorem 2-18.

(a) lim(an + bn) ≤ lim an + lim bn, and

(b) lim an + lim bn ≤ lim(an + bn).

Note. Equality does not always hold in Theorem 2-18. Consider {an} = {sin2 n}

and {bn} = {cos2 n}. Then lim an = lim bn = 1 (this is similar to Example 2.3.A ),

but lim(an + bn) = lim(sin2 n + cos2 n) = 1 < 1 + 1 = 2.

Definition. A function f : R → R is said to be bounded if the range of f is a

bounded set. For a bounded function denote lub(R(f)) as sup(f) and glb(R(f))

and inf(f).

Note. The sup and inf of a sum of bounded functions is similar to the behavior

of lim and lim of a sum of sequences, as given in Theorem 2-18. The behavior is

given in the next result, and part (b) is to be given in Exercise 2.3.A.

Theorem 2-19. Let f and g be bounded functions with the same domain. Then:

(a) sup(f + g) ≤ sup(f) + sup(g), and

(b) inf(f) + inf(g) ≤ inf(f + g).

Note. Recall that a sequence {an} is a Cauchy sequence if: for all ε > 0, there

exists N(ε) such that if n, m > N(ε) then |an − am| < ε. Theorem 2-9 claims that
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a sequence converges if and only if it is Cauchy. We now give a proof of this claim

in the following two exercises verify this claim.

Exercise 2.3.13. Let {an} be a Cauchy sequence.

(a) Then {an} is bounded.

(b) There is at least one subsequential limit for {an}.

(c) There is no more than one subsequential limit of {an}.

(d) {an} converges.

Exercise 2.3.14. A convergent sequence is Cauchy.
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