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Chapter 5. Differentiation.
5.1. The Derivative of a Function.

Note. In this section we define the derivative of a function and explore some of

its properties.

Definition. Let f be a function defined on an interval (a,b) and suppose ¢ € (a, b).

We say f is differentiable at c if
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exists and is finite. If so, we say the limit is the derivative of f at ¢, denoted f'(c).

Note. The following result show that differentiability at a point can be dealt with

in terms of limits of sequences.

Theorem 5-1. Let f be defined on (a,b) with ¢ € (a,b). Then f is differentiable
at ¢ if and only if for every sequence {z,} C D(f) with {x,} — c and x,, # ¢ for

all n,

lim

Note. The following result is seen in Calculus 1 and, simply put, states that

“differentiability implies continuity.”
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Theorem 5-2. Let f be defined on (a,b) and suppose f is differentiable at ¢ €

(a,b). Then f is continuous at c.

Theorem 5-3. Linearity, Product Rule, Quotient Rule.
Let f and g be defined on (a,b) and differentiable at ¢ € (a.b). Then

() (af +89)(c)=af'(c)+ B¢ (c) for all a, 8 € R.

(b) (f9)'(c) = f(e)g'(c) + g(e)f'(c).

o (1 9 f" () = [()g'() ¢ .
()(9> [g(c)]? fg(e)#0.

Note. Theorem 5-3(a) implies that a linear combination of differentiable functions
is differentiable or, equivalently, that the differentiation operator is linear. If we
put the derivative of a function in square brackets, we can sort of draw a picture

of the product and quotient rules as follows:

where we use D to represent the differentiation operator. These “pictures” can be

made even more schematic:

DIOY N =110+ ()] DH:”“‘“”.

For more details, see my “A Useful Notation for Rules of Differentiation,” The

College Journal of Mathematics, 24(4) (1993) 351-352 (which I have posted online

at http://faculty.etsu.edu/gardnerr/pubs/T1.pdf).
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Theorem 5-4. Chain Rule.
Let f be defined on (a,b) and suppose f’(c) exists for some ¢ € (a,b). Suppose g is

defined on an open interval containing the range of f and suppose g is differentiable

at f(c). Then go f = g(f) is differentiable at ¢ and (g o f)'(c) = ¢'(f(c))[f'(¢)].

Theorem 5-5. Let f be a function defined on (a,b). Suppose that f is differ-
entiable at ¢ € (a,b) and f’(¢) > 0. Then there is a number 6 > 0 such that
fle) < f(x)if x € (¢,c+9) and f(x) < f(c) if x € (¢ —9,¢).

Note. Notice that Corollary 5-5 gives the corresponding result for the case f'(c) <
0. Notice that Theorem 5-5 does not say that if f’(¢) > 0 then f is increasing on

some interval about x = ¢, as can be shown by considering

x4 22%sin(1/x), x#0
0 x=0

flz) =
at ¢ = 0. To insure that f is increasing on an interval, we need f’ > 0 on the
interval.
Theorem 5-6. Suppose f is defined on (a,b) and has a relative extremum at
xo € (a,b). If f is differentiable at z, then f'(x¢) = 0.
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