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Chapter 6. Integration.
6.1. The Riemann Integral.

Note. In this section we will consider a function f which is bounded and de-
fined on an interval [a,b]. The results of this section are the single most im-
portant results covered in Analysis 2 (MATH 4227/5227) from the perspective
of a graduate analysis class. We will introduce the Riemann integral of f and
give necessary and sufficient conditions for f to be Riemann integrable on [a, b]
in terms of the “level of continuity” of f. This result is called the Riemann-
Lebesgue Theorem (Theorem 6-11). In the process, we will define a measure
zero set. The topic of measure theory in general is covered in a graduate level
Real Analysis 1 class (our MATH 5210). In fact, I use a version of the notes
for this section as an introduction to my Real Analysis 1 class. For details, see
http://faculty.etsu.edu/gardnerr/5210/Riemann-Lebesgue-Theorem. pdf for

a version of the notes from this section, including several proofs.

Theorem 6-1. If A and B are bounded sets with A C B, then sup(A) < sup(B)
and inf(A) > inf(B).
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Theorem 6-2.

(a) Suppose A and B are nonempty sets such taht x € A and y € B implies = < y.
Then sup(A) and inf(B) are finite and sup(A) < inf(B).

(b) Suppose that A and B are nonempty sets such that x € A and y € B implies
x < y. Then sup(A) = inf(B) if and only if for all € > 0, there exists z(¢) € A
and y(¢) € B such that y(¢) — z(¢e) < e.

Definition. A partition P = {x¢,x1,zs,...,x,} of [a,b] is a set such that
a=20< T <T9 <---<ux, =0

For partitions P and @ of [a,b], we say that @ is a refinement of P if P C Q.

Definition. Let z;_1,z; € P, where P is a partition of [a,b]. For f a bounded

function on [a, b], define
mi(f) = f{f(z) | z € [zi1, 2]},

Mz(f) = SU-p{f(x) | T € [xi—lvxi]}v

and Az; = x; — x;_1. Let
S(f;P)=>_ M(f)Az; and S(f; P) = my(f)Ax;.
i=1 1=1

S(f; P) and S(f; P) are the upper Riemann sum and lower Riemann sum, respec-

tively, of f on [a,b] with respect to partition P.
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Definition. With the notation above, suppose T; € [x;_1,x;]. Then

m

S(f; P)=>_ f(@)Ax

1=1

is a Riemann sum of f on [a,b] with respect to partition P.

Theorem 6-3.

(a) Suppose P and @) are partitions of [a,b] and @ is a refinement of P. Then
S(f;P) < 8(f;Q) and S(f; P) = S(f; Q).

(b) If P and Q are any partitions of [a,b] then S(f; P) < S(f; Q).

(c) Let S(f) = sup{S(f; P) | P is a partition of [a,b]} and S(f) = inf{S(f;P |
P is a partition of [1,b6]}. Then S(f) and S(f) are finite and S(f) < S(f).

Definition. Let f be bounded on [a,b]. Then f is said to be Riemann integrable
on [a,b] if S(f) = S(f). In this case, S(f) is called the Riemann integral of f on

[a, b], denoted b b
5= [ s@de= [ .

Note. First, let’s explore some conditions related to the integrability of f on [a, b].
Notice that these conditions are merely restatements of the definition and that the

proofs follow from this definition, along with properties of suprema and infima.
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Theorem 6-4. Riemann Condition for Integrability.
A bounded function f defined on [a, ] is Riemann integrable on [a, b] if and only

if for all € > 0, there exists a partition P(¢) of [a,b] such that

S(f;P(e)) — S(f; P(e)) < e.

Theorem 6-5. Suppose f is Riemann integrable on [a,b]. If I is a number such

b
that S(f; P) < I < S(f: P) for every partition P, then / f=1I

Definition. Let P = {zg,z1,29,...,2,} be a partition of [a,b]. The norm (or

mesh) of P, denoted || P||, is

|P|| = max{x; —x;—1 |i=1,2,3,...,n}.

Theorem 6-6. A bounded function f is Riemann integrable on [a, b] if and only
if for all € > 0, there exists d() > 0 such that if P is a partition with || P|| < d(¢)
then

S(f;P)—S(f;P) <e.

Note. The following result is proved in Calculus 1. In fact, all functions encoun-
tered in the setting of integration in Calculus 1 involve continuous functions. We

give a proof based on other stated results.

Theorem 6-7. If f is continuous on [a, b], then f is Riemann integrable on |a, b].
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Note. We now introduce a new idea about the “weight” of a set. We will ultimately
see that the previous result gives us, in some new sense, a classification of Riemann

integrable functions.

Definition. The (Lebesgue) measure of an open interval (a,b) is b — a. The

measure of an unbounded open interval is infinite. The measure of an open interval

I is denoted m(I).

Definition. A set £ C R has measure zero if for all € > 0, there is a countable

collection of open intervals {1y, I, I3, ...} such that

E C [OJIZ and im([l) < €.
=1 =1

.
1—7

Note. Recall that if |r| < 1 then Zri =
i=1

Note. The following two results follow from the definition of measure zero.

Theorem 6-8. A subset of a set of measure zero has measure zero.

Theorem 6-9. The union of a countable collection of sets of measure zero is a set

of measure zero.
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Corollary 6-9. A countable set has measure 0.

Note. It is not the case that cardinality and measure are closely related. The con-
verse of Corollary 6-9, for example, is not true. That is, there exists an uncountable

set which is also of measure zero. Such a set is the Cantor (ternary) set.

Definition. Let

1
3_
1] (2 1 27 8
= 10,= = U = NN
02 079 U i 73] U [379] U [97 ]

9
21U27U81U219U207U825U281
2779 9’27 2773 3727 2779 9’27 27’

1
C, = 2" intervals, each of length m

Define the Cantor set to be

C = ﬁ Ch.
n=1
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Note. Notice that

(1 2) g (Z §>

33 9’9

DG DD (D)D)
9’9 277 27 3’3 27" 27 9’9 277 27

1
C¢ = 2" ! disjoint intervals, the sume of the lengths of which is 1 — m

and so
1
co) = =
m( 1) 3
1 2 5 4
CC = - —:—:1——
m(C3) = 34573 9
1 2 4 19 8
oy — 424 - T 1
m(Cy) = 3+5t 5 =% 27
2n
0% 1- %
We have

() (0 v

So C°¢ = U2 Ct. Notice that C. C C¢ ;. In fact, lim m(C}) = 1. Therefore (well,

n—oo

with some details omitted in this class), m(C) = 0.
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Note. The Cantor set includes all real numbers between 0 and 1 with base 3
(“ternary”) decimal expansion which includes only 0’s and 2’s. So, C' contains all

possible “sequences” of 0’s and 2’s.

Note/Theorem. The Cantor set C' is uncountable.

Proof. For z € ' with ternary “decimal” expansion

xr = 0(331)(332)(333) * 3

define
—o. (L) (E2) (Z3)...
f(x)_o(z) (2) (2) 2
Then {f(z) | * € C} will include all “sequences” of 0’s and 1’s. That is, this

set includes the binary representation of all numbers form [0,1]. So f is an onto

function from C' to [0, 1]. Therefore, C' is uncountable. i

Note. f as defines above is not one to one (but it is onto). For example,

f (%) = £(0.2000- - -3) = 0.1000 - - - = %

and

f (%) = £(0.0222--3) = 0.0111 -y = %

There’s a problem with multiple representations when using decimal expansions
(though our cardinality claim still holds). As an additional example, 1 = 0.222- - -3
and 1 =0.999- - *10-
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Note. We now return to Riemann integrable functions and, ultimately, classify

Riemann integrable bounded functions in term of a measure zero set.

Definition. The oscillation of a function f on a set A is

sup{[f(z) = f(W)| | z,y € AND(f)}

where D(f) denotes the domain of f. The oscillation of f at x is

Jim (sup{|f(a') = f(=")| | #'.a" € (& — hoz + ) N D(F)}).

denoted osc(f;x).

Example. Consider

)
24+1 forxz >0

flx) = S 0 for x =0

\332—1 for x < 0.

has osc(f;0) = 2. For x # 0, osc(f;x) = 0.

Theorem 6-10. A function f is continuous at x € D(f) if and only if osc(f;z) = 0.

Note. Now for our main result concerning Riemann integrable functions.
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Theorem 6-11. The Riemann Lebesgue Theorem
Consider a bounded function f defined on [a, b]. If f is Riemann integrable on [a, b]

if and only if the set of discontinuities of f on [a, b] has measure zero.

Note. We need a preliminary result before proving the complete Riemann-Lebesgue

Theorem.

Exercise 6.1.8. Let f be a function with D(f) = [a,b]. Then for any s > 0,
As ={z € a,b] | osc(f;x) > s}

1S compact.

Note. With the notation from this exercise, if f is discontinuous at some zy € [a, b],
then xy € A for some s > 0. So for f : [a,b] — R, the set of discontinuities is

D = U Ay,. That is, the set of discontinuities of f : [a,b] — R is a countable
n=1

union of closed sets. Such a set is said to be F,. One can also show that, more

generally, if f : R — R, then the set of discontinuities is an F, set. Now for the

remaining part of the proof of the Riemann-Lebesgue Theorem (Theorem 6-11).
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Note. Theorems 6-4 and 6-6 also give necessary and sufficient conditions for the
Riemann integrability of a bounded function. However there is, in a sense, no new
information in these results since they are really just restatements of the definition
of Riemann integral. On the other hand, the Riemann-Lebesgue Theorem cleanly
classifies Riemann integrable functions. It gives a condition on the function, in
terms of properties of the function without any reference to partitions or Riemann

sums (directly, at least).

Note. We know from Theorem 6-7 a continuous function f on [a,b] is Riemann
integrable on [a,b]. So, perhaps, it is not surprising that necessary and sufficient
conditions for Riemann integrability of f involve the “level of discontinuity” of f.
Informally, interpret the Riemann-Lebesgue Theorem as saying that a function is

Riemann integrable if and only if the function is not too badly discontinuous.

Example. In Section 4-1, we say an example of a function which is continuous on

the rational numbers and discontinuous on the irrational numbers:

0 ifzeR\Q
/g ifx=p/qgeQ

fx) =

where p/q are in reduced terms. The set of discontinuities of f has measure zero
(since Q is countable and hence, by Corollary 6-9, measure zero). So f is Riemann

integrable on any interval and, in fact, [, f = 0.
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Example. The Dirichlet function is:

0 ifzeR\Q
1 ifzxeq.

D(z) =

D is bounded (on [0, 1], say) but discontinuous on [0,1]. In graduate level Real
Analysis 1 (MATH 5210), you will see that the measure of [0,1] is 1 (we already
know that the measure of (0,1) is 1 but, technically, we cannot prove anything
about the measure of a closed interval, since we have not yet dealt with measure
theory). So D is not Riemann integrable on [0,1]. Notice that D is 0 except on
the rationals and we know that the rationals are a measure zero set. So, if we can
define fol D, then it should be 0. We take this as a first motivation to study another
type of integration—one which makes use of the measure of sets. This is a prime
motivation to explore another type of integration, known as Lebesque integration.
This is the main topic of out Real Analysis 1 (MATH 5210) graduate class. You
should take this class, eh!
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