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6.2. Some Properties and Applications of the

Riemann Integral.

Note. In this section we explore several properties of the Riemann integral, many

of which you are familiar with from calculus.

Note. We have seen that, with the notation of Section 6.1,

Mi(f + g) = Mi(f) + Mi(g)

mi(f + g) = mi(f) + mi(g)

If c ≥ 0, Mi(cf) = cMi(f), and mi(cf) = cmi(f). If c < 0, Mi(cf) = cmi(f), and

mi(cf) = cMi(f).

Theorem 6-13. Suppose f and g are Riemann integrable on [a, b]. Then:

(a) f + g is Riemann integrable on [a, b] and

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

(b) For any number c, cf is Riemann integrable on [a, b] and

∫ b

a

cf = c

∫ b

a

f.

Note. The Riemann-Lebesgue Theorem (Theorem 6-11) tells us that f + g is

Riemann integrable. We need only verify the value of the integral.
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Theorem 6-14. f is Riemann integrable on [a, b] if and only if f is Riemann

integrable on [a, c] and [c, b] for all c ∈ (a, b). Then

∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Definition. If f is Riemann integrable on [a, b], then define

∫ a

b

f = −

∫ b

a

f.

Corollary 6-14. If a, b, c are such that
∫ b

a f ,
∫ c

b f , and
∫ c

a f exist, then

∫ c

a

f +

∫ b

c

f =

∫ b

c

f.

Theorem 6-15. Suppose f is Riemann integrable on [a, b] and f ≥ 0. Then
∫ b

1

f ≥ 0.

Corollary 6-15a. If f and g are Riemann integrable on [a, b] and f ≥ g then
∫ b

a

f ≥

∫ b

a

g.

Corollary 6-15b. If f is Riemann integrable on [a, b], then |F | is Riemann inte-

grable on [a, b] and

∣

∣

∣

∣

∫ b

a

f

∣

∣

∣

∣

≤

∫ b

a

|f |.
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Corollary 6-15c. If f is a bounded Riemann integrable function on [a, b] and

m ≤ f(x) ≤ M for x ∈ [a, b] then

m(b − a) ≤

∫ b

a

f ≤ M(b − a).

Theorem 6-16. Mean Value Theorem for Integrals.

Suppose f is continuous on [a, b]. Then there exists c ∈ [a, b] such that

∫ b

a

f = f(c)(b− a).

Theorem 6-17. Let f be bounded and Riemann integrable on [a, b] and let F (x) =
∫ x

a

f for x ∈ [a, b]. Then F is continuous on [a, b].

Theorem 6-18. Let f be a continuous function on [a, b] and let F (x) =

∫ x

a

f for

x ∈ (a, b). Then F is differentiable at x and F ′(x) = f(x).

Theorem 6-19. Fundamental Theorem of Calculus.

Suppose f is a bounded Riemann integrable function on [a, b] and suppose F is

defined on [a, b] such that

(i) F is continuous on [a, b] and differentiable on (a, b).

(ii) F ′(x) = f(x) for all x ∈ (a, b).

Then

∫ b

a

f = F (b) − F (a).
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Note. An example of a function f satisfying the hypotheses of the Fundamental

Theorem of Calculus which is not continuous is

f(x) =







1
2

+ 2x sin
(

1
x

)

− cos
(

1
x

)

, x 6= 0

1
2
, x = 0.

Then f is not continuous at x = 0 and

F (x) =







x
2

+ x2 sin
(

1
x

)

, x 6= 0

0, x = 0

is an antiderivative of f (that is, F ′(x) = f(x) for all x ∈ R). Also notice that F

is continuous (as guaranteed by Theorem 6-17). This example is from Ken Kubota’s

website http://www.msc.uky.edu/ken/ma570/homework/hw8/html/ch2e.htm, ac-

cessed spring 2003.

Corollary 6-19. Integration by Parts.

Suppose f and g have continuous derivatives on [a, b]. Then
∫ b

a
fg′ and

∫ b

a
gf ′ exist

and
∫ b

a

fg′ = (fg)|ba −

∫ b

a

gf ′.

Theorem 6-20. Change of Variables.

Suppose g′ is continuous on [a, b], and that f is continuous on g([a, b]). Then
∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du.

Definition. An integral is improper if either the function is unbounded or the

interval of integration is unbounded.
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Definition. Suppose f is defined on [a,∞) and Riemann integrable on [a, t] for

all t ∈ (a,∞). The improper Riemann integral of f on [a,∞) is

∫ ∞

a

f = lim
t→∞

∫ t

a

f,

provided the limit exists. If the limit exists as a finite number, the integral is said

to converge. If the limit is ±∞, the limit diverges to ±∞. Otherwise, the integral

is divergent. If f is defined on (−∞,∞) and Riemann integrable on [−t, a] and

[a, t] for all t and some a, then

∫ ∞

−∞

f =

∫ a

−∞

f +

∫ ∞

a

f.

Definition. Suppose f is defined on (a, b] and Riemann integrable on [t, b] for all

t ∈ (a, b) and lim
t↓a

f(t) = ±∞. Then define

∫ b

a

f = lim
r↓a

∫ b

t

f.

The integral is said to converge, diverge to ±∞, or be divergent as above.

Definition. For x > 0 define

ln(x) =

∫ x

1

1

t
dt.
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Theorem.

(i) ln(1) = 0.

(ii) ln(ab) = ln(a) + ln(b) for a, b > 0.

(iii) ln(a/b) = ln(a) − ln(b) for a, b > 0.

(iv) ln(ar) = r ln(a) for a > 0.

Theorem. 1 +
1

2
+

1

3
+ · · · +

1

2n−1
≥ 1 + (n − 1)

1

2
.

Theorem. lim
n→∞

ln(n) = ∞.

Corollary. lim
x↓0

ln(x) = −∞.

Definition. Let e be the unique real number such that ln(e) = 1.

Note. We have

d

dx
[lnx]

∣

∣

∣

∣

x=1

= lim
h→0

ln(1 + h) − ln(1)

h
= lim

h→0

ln(1 + h)

h
= lim

h→0
ln(1 + h)1/h =

1

(1)
= 1.

So

lim
h→0

ln(1 + h)1/h = ln lim
h→0

(1 + h)1/h = 1

and

lim
h→0

ln(1 + h)1/h = e or lim
n→∞

(

1 +
1

n

)n

= e.
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Note. We have ln(ex) = x ln(e) = x for all x ∈ R. Denote the inverse of ln(x) as

ex. Then:

(i) e0 = 1.

(ii) ea+b = eaeb.

(iii) ea−b = ea/eb.

(iv) eax(ea)x.
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