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6.3. The Riemann-Stieltjes Integral.

Note. In this section we define the Riemann-Stieltjes integral of function f with

respect to function g. When g(x) = x, this reduces to the Riemann integral of f .

Definition. Let f be bounded on [a, b], let g be nondecreasing on [a, b], and let

P = {x0, x1, x2, . . . , xn} be a partition of [a, b]. The upper (lower) Riemann-Stieltjes

sum of f with respect to g and with respect to P is

S(f ; g;P ) =

n
∑

i=1

Mi(f)[g(xi) − g(xi−1)] =

n
∑

i=1

Mi(f)∆g(xi)

(

S(f ; g;P ) =
n
∑

i=1

mi(f)[g(xi) − g(xi−1)] =
n
∑

i=1

mi(f)∆g(xi)

)

.

Note. Since g is nondecreasing, ∆g(xi) ≥ 0.

Note. If g(x) = x then ∆g(xi) = ∆xi and Riemann-Stieltjes integrals will reduce

to Riemann integrals.

Note. Theorem 6-21 gives relationships between refinements of a partition, com-

pares upper and lower Riemann-Stieltjes sums, and defines s(f ; g) and s(f ; g). We

say f is integrable with respect to g on [a, b] is s(f ; g) = s(f ; g).
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Theorem 6-22. Riemann Condition for Integrability.

The function f is integrable with respect to g on [a, b] if and only if for all ε > 0

there exists a partition P (ε) of [a, b] such that

|s(f ; g;P (ε)) − s(f ; g;P (ε))| < ε.

Example. Let

f(x) =







0, x ∈ [0, 1]

1, x ∈ (1, 2]

and

g(x) =







0, x ∈ [0, 1)

1, x ∈ [1, 2].

Let P be a partition {x0, x1, x2, . . . , xn} of [0, 2] with xj = 1. Then

S(f ; g;P ) =

n
∑

i=1

Mi(f)[g(xi) − g(xi−1)]

= Mi(f)[g(xj) − g(xj−1)]

= Mj(f)[1 − 0] = Mj(f) = 0

and

S(f ; g;P ) =

n
∑

i=1

mi(f)[g(xi) − g(xi−1)]

= mi(f)[g(xj) − g(xj−1)]

= mj(f)[1 − 0] = mj(f) = 0.

So,

∫

2

0

f dg = 0.
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Note. In the previous example, if 1 is not an element of P , then S(f ; g;P ) = 0

and S(f ; g;P ) = 1. So even through ‖P‖ is small, s and s are not “close.”

Theorem 6-23. If f is continuous on [a, b], then f is integrable with respect to g.

Note. The following result gives a relationship between Riemann integrals and

Riemann-Stieltjes integrals with respect to an increasing function.

Theorem 6-24. Suppose f is Riemann integrable on [a, b] and g is an increasing

function on [a, b] such that g′ is defined and Riemann integrable on [a, b]. Then f

is integrable with respect to g on [a, b], fg′ in Riemann integrable on [a, b] and

∫ b

a

f dg =

∫ b

a

f(x)g′(x) dx.

Note. The following result shows that we have linearity with respect to both

integrands and the “integrator” function.

Theorem 6-25.

(i) Suppose f1 and f2 are integrable with respect to g on [a, b]. Then αf1 + βf2 is

integrable with respect to g on [a, b] and

∫ b

a

(αf1 + βf2) dg = α

∫ b

1

f1 dg + β

∫ b

a

f2 dg.
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(ii) Suppose f is integrable with respect to g1 and g2 on [a, b]. Then f is integrable

with respect to αg1 + βg2 (where α, β are nonnegative) on [a, b] and

∫ b

a

f d(αg1 + βg2) = α

∫ b

a

f dg1 + β

∫ b

a

f dg2.

Note. The following result shows how a Riemann-Stieltjes integral behaves when

g has a jump discontinuity.

Theorem 6-26. Let f and g be such that g is increasing on [a, b]. Suppose for

some c ∈ (a, b):

(i) fg′ has an antiderivative F (x) on [a, c) and an antiderivative G(x) on (c, b], and

lim
x↑c

F (x) and lim
x↓c

G(x) exist.

(ii) g has a jump discontinuity at c and f is continuous at c.

Then

∫ b

a

f dg = lim
x↑c

[F (x) − F (a)] + f(c)

[

lim
x↓c

g(x) − lim
x↑c

g(x)

]

+ lim
x↓c

[G(b) − G(x)].

Corollary 6-26. Theorem 6-26 holds for a finite number of discontinuities (by

induction).
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Problem 6-2-2(a). Consider

f(x) =



















2x for x ∈ [0, 1)

2x3 for x ∈ (1, 3/2]

ex for x ∈ (3/2, 3]

and g(x) =



















0 for x ∈ [0, 1)

1 for x ∈ [1, 2]

3 for x ∈ (2, 3]

Then
∫

3

0

f dg =

∫

1

0

f dg + f(1)

[

lim
x↓1

g(x) − lim
x↑1

g(x)

]

+

∫

2

1

f dg

+f(2)

[

lim
x↓2

g(x) − lim
x↑2

g(x)

]

+

∫

3

2

f dg = 0 + 2[1 − 0] + 0 + e2[3 − 1] + 0 = 2 + 2e2.

Definition. Suppose g is an increasing function and suppose f is Reimann-Stieltjes

integrable with respect to g. Then define

∫ b

a

f dg = −

∫ b

a

f d(−g).

Note. We can now deal with any integrator function g which can be written as

g = g1 − g2 where both g1 and g2 are nondecreasing. Such a function as g is said

to be of bounded variation.

Theorem 6-29. Integration by Parts.

Suppose f and g are increasing on [1, b]. Then f is Riemann-Stieltjes integrable

with respect to g if and only if g is Riemann-Stieltjes integrable with respect to f .

In this case,
∫ b

a

f dg = f(b)g(b)− f(a)g(a)−

∫ b

a

g df.
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Corollary 6-29(b). If f is monotone and g is continuous on [a, b] then f is

Riemann-Stieltjes integrable with respect to g on [a, b].

Example. An interesting application of Riemann-Stieltjes integration occurs in

probability theory. Consider a regular 6-sided die and the function

g(x) =







































































0 for x ∈ (−∞, 1)

1/6 for x ∈ [1, 2)

2/6 for x ∈ [2, 3)

3/6 for x ∈ [3, 4)

4/6 for x ∈ [4, 5)

5/6 for x ∈ [5, 6)

1 for x ∈ [6,∞).

Let x represent the outcome of the throw of the die. We can compute the expected

value of x as
∫∞

−∞ x dg:
∫ ∞

−∞

x dg =

∫

1

−∞

x dg+(1)

[

lim
x↓1

g(x) − lim
x↑1

g(x)

]

+

∫

2

1

x dg+(2)

[

lim
x↓2

g(x) − lim
x↑2

g(x)

]

+

∫

3

2

x dg + (3)

[

lim
x↓3

g(x) − lim
x↑3

g(x)

]

+

∫

4

3

x dg + (4)

[

lim
x↓4

g(x) − lim
x↑4

g(x)

]

+

∫

5

4

x dg+(5)

[

lim
x↓5

g(x) − lim
x↑5

g(x)

]

+

∫

6

5

x dg+(6)

[

lim
x↓6

g(x) − lim
x↑6

g(x)

]

+

∫ ∞

6

x dg

= 0 + (1)[1/6] + (2)[1/6] + (3)[1/6] + (4)[1/6] + (5)[1/6] + (6)[1/6] + 0 = 7/2.

Notice also that
∫∞

−∞
dg = 1, as we would need from a probability distribution. So

we can translate simple probability questions in the discrete setting which use sum-

mations into the continuous setting where summation is replaced with Riemann-

Stieltjes integration. This allows us to apply the theory of integration even in the

setting of discrete probability problems.
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Example. The Dirac-Delta Distribution, δ(x), which you might encounter in a

physics class is sometimes described (well, mis-described) as having the following

properties: δ(x) = 0 for x 6= 0, δ(x) = ∞ for x = 0, and
∫∞

−∞ δ(x) dx = 1. As

you will see in a graduate level analysis class, there is no function satisfying these

properties (See Problem 4.17 of Section 4.3 on “Measurable Nonnegative Functions”

in Royden and Fitzpatrick’s Real Analysis, 4th Edition—this is the book used in

ETSU’s Real Analysis 1 and 2 [MATH 5210/5220] classes). However, this can be

dealt with using Riemann-Stieltjes integration and the function

g(x) =







0 for x ∈ (−∞, 0)

1 for x ∈ [0,∞).

Then the derivative of g is 0 if n 6= 0. The definition of limit gives that the

derivative of g is ∞ at 0. Also, we have the Riemann-Stieltjes integral

∫ ∞

−∞

dg =

∫

0

−∞

dg + (1)

[

lim
x↓0

g(x) − lim
x↑0

g(x)

]

+

∫ ∞

0

dg = 0 + (1)[1] + 0 = 1.

So the derivative of g(x) has the values of δ(x) given above and the Riemann-

Stieltjes integral of f(x) = 1 with respect to g satisfies the integral property of

δ(x) given above. The Dirac Delta Distribution is used to locate point charges in

electricity and magnetism. If f is a function defined on all of R, then we can use

the Riemann-Stieltjes integral to determine the value of f at a specific point (say

x = x0):

∫ ∞

−∞

f(x) dg(x − x0) = f(x0)

[

lim
x↓x0

g(x − x0) − lim
x↑x0

g(x − x0)

]

= f(x0)[1] = f(x0).
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