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Chapter 7. Series of Real Numbers.

7.1. Tests for Convergence.

Note. In this section we define “series” and present several results concerning the

convergence and divergence of series which will be familiar from Calculus 2.

Definition. A series
∑∞

n=1
an is the ordered pair of sequences ({an}, {Sn}) where

Sn =
∑n

i=1
ai. The sequence {Sn} is the sequence of partial sums for the series.

The numbers an are the terms of the series.

Definition. The series
∑

an converges to L if the sequence of partial sums {Sn}

converges to L. The series diverges if {Sn} diverges and the series diverges to ∞

or −∞ if {Sn} diverges to ∞ or −∞.

Note. The previous definition puts all the “ε/δ work” for series back on sequences.

So we expect the convergence/divergence of series to behave similarly to the way

sequences behave. In fact, the following theorem follows immediately from Theorem

2-4 which concerns linear combinations of sequences.

Theorem 7-1. Suppose
∑

an converges to a and
∑

bn converges to b. Then for

α, β ∈ R,
∑

(αan + βbn) converges to (αa + βb).
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Theorem 7-2. The convergence or divergence of a series is not affected by the

addition of a finite number of terms to the series.

Theorem 7-3. Test for Divergence.

If lim an 6= 0 then
∑

an diverges.

Note. The Test for Divergence comes with the standard warning: It is a test for

divergence and says nothing about convergence of a series. That is, we may have

the terms an go to 0, yet the series may not converge.

Definition. A geometric series
∑

an is a series of the form

a + ar + ar2 + ar3 + · · · .

Theorem 7-4. Let a + ar + ar2 + ar3 + · · · be a geometric series. If a = 0, the

series converges to 0. If a 6= 0, the series converges to 1

1−r
if |r| < 1 and diverges if

|r| ≥ 1.

Note. If all the terms of a series are positive, then the partial sums form a mono-

tone sequence.

Theorem 7-5. Let
∑

an be a “positive term series.” Then
∑

an either converges

or diverges to ∞.
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Theorem 7-6. Comparison Test. Let
∑

an and
∑

bn be positive term series

with an ≤ bn for all n ∈ N. Then

(a) If
∑

bn converges then
∑

an converges.

(b) If
∑

an diverges to ∞ then
∑

bn diverges to ∞.

Note. The down side of the Comparison Test is that we can only apply it to

a given series if we can find another series for which (1) we know how the new

series behaves, and (2) the new series compares “favorably” to the given series. For

example, if we find a series
∑

bn which diverges to ∞ and for which an ≤ bn, then

this tells us nothing about the series
∑

an. The following two results are easier to

use in the sense that they compare a series to itself in order to test convergence.

Theorem 7-7. The Ratio Test.

Let
∑

an be a series of positive terms. Let

R = lim
an+1

an
and r = lim

an+1

an
.

The series converges if R < 1 and diverges if r > 1.

Note. The version of the Ratio Test presented here is more robust that that

presented in Calculus 2 in that this version does not require lim an+1

an

to exist, since

this version uses lim and lim.
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Theorem 7-8. The Root Test.

Let
∑

an be a series of nonnegative terms and let ρ = lim(an)
1/n. The series

∑
an

converges if ρ < 1 and diverges if ρ > 1.

Note. In Exercise 7-1-19 it is shown that if the Ratio Test can be used to find the

convergence or divergence of a series, then the Root Test will do the same for that

particular series.

Theorem 7-9. The Integral Test.

Let
∑

an be a series of positive numbers with a1 ≥ a2 ≥ a3 ≥ · · ·. Let f(x) be a

nonincreasing continuous function of (0,∞) such that f(n) = an for each positive

integer n. Then

Sn = a1 + a2 + · · · an ≥

∫ n

1

f(x) dx and Sn − a1 = a2 + a3 + · · ·+ an ≤

∫ n

1

f(x) dx

so that the series
∑

an converges if and only if the improper integral
∫ ∞

1
f(x) dx

converges. If the series converges, then

∑
an ≥

∫ ∞

1

f(x) dx ≥
∑

an − a1.

Thus, if the integral test applies, we have bounds on the number to which a series

converges.

Note. The down side of the Integral Test is that it requires us to evaluate a definite

integral, and this can be difficult. But one important application is given in the

following corollary.
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Corollary 7-9. p-series Test.

The series
∑

1/np converges if p > 1 and diverges if p ≤ 1.

Definition. The divergent series
∑

1/n is the harmonic series.

Note. The harmonic series is a positive term series that satisfies the condition

lim an = 0, yet it diverges. This example shows that there is no converse of the

Test for Divergence.
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