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7.2. Operations Involving Series.

Note. In this section we study absolutely and conditionally convergent sequences.

We introduce alternating series and the Alternating Series Estimation Theorem.

Most of this material is covered in Calculus 2 (MATH 1920).

Definition. A series
∑

an is absolutely convergent if
∑

|an| is convergent. If
∑

an

converges and
∑

|an| diverges, then
∑

an is conditionally convergent.

Theorem 7-10. If a series is absolutely convergent then it is convergent.

Corollary 7-7. For
∑

an, with an 6= 0 for all n ∈ N, let
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Then
∑

an converges absolutely if R < 1 and diverges if r > 1.

Corollary 7-8. For
∑

an, let ρ = lim(|an|)
1/n. Then

∑

an converges absolutely if

ρ < 1 and diverges if ρ > 1.

Theorem 7-11. Let
∑

an be conditionally convergent. Choose the positive terms

of
∑

an and produce
∑

bn and choose the negative terms of
∑

an and produce
∑

cn. Then
∑

bn diverges to ∞ and
∑

cn diverges to −∞.
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Definition. Let f be a one to one and onto function from N → N. Let
∑

an be a

series and define
∑

bn where bn = af(n). Then
∑

bn is a rearrangement of
∑

an.

Theorem 7-12. Let
∑

an be conditionally convergent. Then given any number

L (finite or infinite), there is a rearrangement of
∑

an that converges to L.

Note. You should find Theorem 7-12 shocking! The warning to take away from

this result is that you must be very careful when manipulating series. In particular,

conditionally convergent can be ill-behaved.

Example. We can rearrange the alternating harmonic series to converge to 1. We

start with the first term 1/1 and then subtract 1/2. Next we add 1/3 and 1/5,

which brings the total back to 1 or above. Then we add consecutive negative terms

until the total is less than 1. We continue in this manner: When the sum is less

than 1, add positive terms until the total is 1 or more, then subtract (add negative)

terms until the total is again less than 1. This process can be continued indefinitely.

Because both the odd numbered terms and the even-numbered terms of the original

series approach 0 as n → ∞, the amount by which our partial sums exceed 1 or

fall below it approaches 0. So the new series converges to 1. The rearranged series

starts like this:
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Theorem 7-13. Suppose
∑

an converges to L and
∑

bn is obtained from
∑

an

by inserting parentheses. Then
∑

bn converges to L.

Theorem 7-14. Let
∑

an be absolutely convergent. Let
∑

a′
n be defined by

a′
n =







an if an ≥ 0

0 if an < 0.

and
∑

a′′
n be defined by

a′′
n =







an if an < 0

0 if an ≥ 0.

Then
∑

a′
n and

∑

a′′
n are absolutely convergent and

∑

an =
∑

a′
n +

∑

a′′
n.

Theorem 7-15. Let
∑

an be absolutely convergent and let
∑

a′
n and

∑

a′′
n be as

in Theorem 7-14. If
∑

a′
n = P and

∑

a′′
n = M then any rearrangement of

∑

an

converges to P + M .

Definition. If an > 0 for every n ∈ N, then the series
∑

(−1)nan and
∑

(−1)n+1an

are called alternating series.

Theorem 7-16. Alternating Series Test.

Let
∑

(−1)n+1an be alternating such that

(i) an ≥ an+1 ≥ 0 for all n ∈ N,

(ii) lim an = 0.

Then
∑

(−1)nan and
∑

(−1)n+1an converges.
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Example. The alternating p-series
∑ (−1)n−1

np converges for all p > 0. We have seen

that for p > 1 the series, in fact, converges absolutely. However, since for 0 < p ≤ 1

the regular p-series diverges, we see that the alternating p-series are conditionally

convergent for these values of p.

Corollary 7-16.

(a) If
∑

(−1)n+1an is alternating and satisfies the hypotheses of Theorem 7-16 and

converges to L, then L < a1.

(b) As above, if {Sn} is the sequence of partial sums, then |L− Sn| < |an+1|.

Note. Part (b) of Corollary 7-16 is the “Alternating Series Estimation Theorem”

and shows that the sum of the first n terms of an alternating series (which satisfies

the hypotheses of Theorem 7-16)) approximates the sum of the series with an error

of |an+1|.

Example. If we sum the first 99 terms of the alternating harmonic series
∑∞

n=1
(−1)n+1

n ,

then we are within |a100| = 0.01 of the actual sum. By the way, this gives some

indication of how slowly the alternating harmonic series converges.

Definition. Let
∑

an and
∑

bn be series. The Cauchy product of these is
∑

cn

where cn =
∑n

k=0 akbn−k.
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Note. It is easy to show that the Cauchy product of two absolutely convergent

series is absolutely convergent. But there is a stronger result.

Theorem 7-17. Merten’s Theorem.

If
∑

an is absolutely convergent and
∑

bn is convergent, then the Cauchy product

of these two series converges to (
∑

an)(
∑

bn).
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