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Chapter 8. Sequences and

Series of Functions.

8.1. Sequences of Functions.

Note. In this section we define the pointwise and uniform limit of a sequence of

functions. We show how the limit function relates to the functions in the sequence

in terms of continuity and integrability. We prove the second most important result

of Analysis 2 in Theorem 8-3!

Note. For a given sequence of functions fn, if for all x ∈ E the sequence of numbers

{fn(x)} converges, then we can define f(x) = limn→∞ fn(x) with domain E. Are

there properties of the fn functions which are shared by the limit function f?

Question 1. If fn is continuous for all n ∈ N, is limn→∞ fn continuous?

Answer 1. NO! Let fn(x) = xn for x ∈ E = [0, 1].

Question 2. If
∫ b

a fn(x) dx = 1 for all n ∈ N, is
∫ b

a f(x) dx = 1?

Answer 2. NO! Consider

fn(x) =


n2x if x ∈ [0, 1/n]

2n− n2x if x ∈ (1/n, 2/n]

0 if x ∈ (2/n,∞).

Then
∫ 1

0 fn(x) dx = 1 for all n ∈ N, but
∫ 1

0 f(x) dx =
∫ 1

0 0 dx = 0.
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Note. In fact, a limit of integrable functions need not be integrable. Let q1, q2, . . .

be an enumeration of Q and define

fn(x) =

 1 if x ∈ {q1, q2, . . . , qn}

0 if x ∈ R \ {q1, q2, . . . , qn}.

Then f = limn→∞ fn is the Dirichlet function, given by the formula

fn(x) =

 1 if x ∈ Q

0 if x ∈ R \Q.

Notice that each fn is integrable, but f is not integrable. If a series is absolutely

convergent then it is convergent.

Definition. Let fn be defined on E and suppose {fn(x)} is a convergent sequence

of numbers for each x ∈ E. Then for all x ∈ E, define f(x) = limn→∞ fn(x). The

function f is the pointwise limit of the fn’s.

Note. We see from the questions above that the pointwise limit is not sufficient

to preserve properties of the fn in the function f . We need a stronger version of

convergence for a sequence of functions.

Definition. Let fn be defined on E and suppose {fn(x)} converges. Define for all

x ∈ E, f(x) = limn→∞ fn(x). Then f is the uniform limit of {fn} if

for allε > 0, there exists N(ε) ∈ N such that

if n > N(ε) then |fn(x)− f(x)| < ε for all x ∈ E.

Sequence {fn} is said to converge uniformly to f on set E.
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Note. The “uniform” in uniform limit is based on the fact that the same N(ε) ∈ N

“works” for all x ∈ E.

Theorem 8-1. Suppose {fn} converges pointwise to f on E. Let

Mn = sup
x∈E

|fn(x)− f(x)|.

Then {fn} converges uniformly to f on E if and only if limn→∞ Mn = 0.

Note. Notice that for fn(x) = xn on E = [0, 1], we have Mn = supx∈E |fx(x) −

f(x)| = 1, and we see that {fn} does not converge uniformly on [0, 1]. Notice that

the (pointwise) limit function is the discontinuous function

f(x) =

 0 if x ∈ [0, 1)

1 if x = 1.

Theorem 8-2. Let f be the uniform limit of a sequence of continuous functions

{fn}. Then f is continuous.

Note. We now see why the answer to Question 1 is “no.” Pointwise convergence is

not sufficient force a limit of continuous functions to be continuous—but uniform

convergence is.

Note. The following theorem is the second most important result in Anal-

ysis 2 (after the Riemann-Lebesgue Theorem)!!! It tells us when the limit of the

(Riemann) integrals of a sequence of functions is the integral of the limit function.
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Theorem 8-3. Suppose {fn} is a sequence of Riemann integrable functions on

[a, b]. If {fn} converges uniformly to f on [a, b], then f is Riemann integrable on

[a, b] and

lim
n→∞

(∫ b

a

fn(x) dx

)
=

∫ b

a

(
lim
n→∞

fn(x)
)

dx =

∫ b

a

f(x) dx.

Proof. First, we show that the limit function f is integrable. Let ε > 0. Since

{fn} → f uniformly on E, there exists N ∈ N such that for all x ∈ [a, b] we have

|f(x)− fN(x)| < ε

6(b− a)
.

Since fN is Riemann integrable, there is a partition P (ε) of [a, n] such that S(fN ; P )−

S(fN : P ) < ε/3 by the Riemann Condition for Integrability (Theorem 6-4). In

Exercise 8-1-11 it is shown that

|f(x)− fN(x)| < ε

6(b− a)
implies |Mi(f)−Mi(fN)| < ε

3(b− a)

and |mi(f)−mi(fN)| < ε

3(b− a)
.

So

|S(f ; P )− S(fN ; P )| ≤
∑

i

|Mi(f)−Mi(fN)|∆xi

<
ε

3(b− a)

∑
i

∆xi =
ε

3(b− a)
(b− a) =

ε

3
.

Also

|S(f ; P )− S(fN ; P )| ≤
∑

i

|mi(f)−mi(fN)|∆xi <
ε

3
.

Therefore for this particular partition,

|S(f ; P )− S(fN ; P )| = |S(f ; P )− S(fN ; P ) + S(f ; P )
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−S(fN ; P ) + S(f ; P )− S(fN ; P )|

≤ |S(f ; P )− S(fN ; P )|+ |S(f ; P )− S(fN ; P )|

+|S(f ; P )− S(fN ; P )|

<
ε

3
+

ε

3
+

ε

3
= ε.

So by the Riemann Condition for Integrability (Theorem 6-4), f is integrable.

Now for the value of the integral. Let ε > 0. Then there exists N ∈ N such that

for all n > N we have

|fn(x)− f(x)| < ε for all x ∈ [a, b]

by the uniform convergence. Therefore, fn(x) − ε < f(x) < fn(x) + ε for all

x ∈ [a, b]. This implies∫ b

a

(fn(x)− ε) dx <

∫ b

a

f(x) dx <

∫ b

a

(fn(x)ε) dx,

or ∫ b

a

fn(x) dx− ε(b− z) <

∫ b

a

f(x) dx <

∫ b

a

fn(x) dx + ε(b− a).

Therefore ∣∣∣∣∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ < ε(b− a)

for all n < N and so the sequence
{∫ b

a fn(x) dx
}

converges to
∫ b

a f(x) dx.

Note. One of the main questions addressed in graduate level Real Analysis (MATH

5210-5220) is when it is that we can interchange the processes of limit and integra-

tion. Theorem 8-3 shows that for Riemann integration, we need uniform conver-

gence. In graduate real analysis, we develop another type of integral (the Lebesgue
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integral) for which the condition of uniform convergence can be weakened, and yet

limit and integration can still be interchanged. Such results are called “convergence

theorems.” For more details see my online notes for Real Analysis 1 (MATH 5210).

In particular, see the results in Chapters 4 and 5.

Note. The fact that we consider integrals over closed and bounded intervals is

necessary in Theorem 8-3, as shown in Example 8-7: Let

fn(x) =

 1/n if x ∈ [0, n]

0 if x > n.

Then fn → 0 uniformly on [0,∞) but∫ ∞

0
fn(x) dx = 1 6=

∫ ∞

0
0 dx = 0.

Note. We might expect that uniform convergence solved all of our problems and

preserves all sorts of properties of the fn’s. However, Example 8-4 shows that uni-

form convergence is not sufficient to insure that a convergent sequence of differen-

tiable functions has the expected derivative: Let fn(x) = sinnx√
n

for x ∈ [0, 1]. Then

limn→∞fn(x) = 0 (uniformly) on [0, 1]. But f ′n(x) =
√

n cos(nx) and limn→∞ f ′n(x)

does not exist.

http://faculty.etsu.edu/gardnerr/5210/notes1.htm
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Theorem 8-4. Let {fn} be a sequence defined on set E. Then {fn} converges

uniformly to f on E if and only if

for all ε > 0 there exists N(ε) ∈ N such that

if x ∈ E and m, n > N(ε) then |fn(x)− fm(x)| < ε.

Theorem 8-5. Let {fn} be a sequence that converges uniformly to f on [a, b]\{x0}

where x0 ∈ [a, b]. Suppose limx→x0
fn(x) exists for all n ∈ N. Then

lim
x→x0

(
lim
n→∞

fn(x)
)

= lim
n→∞

(
lim
x→x0

fn(x)

)
.

Theorem 8-6. Let {fn} be a sequence of functions which are differentiable on

[a, b]. Suppose

(i) there exists x0 ∈ [a, b] where {fn(x0)} converges,

(ii) {f ′n} converges uniformly on [a, b].

Then

(a) {fn} converges uniformly to f on [a, b], and

(b) f ′(x) = limn→∞ f ′0(x) on (a, b).

Note. This may seem an odd time to address this, but we finally show that the

derivative of xr is rxr−1 for all r ∈ R. Of course, we only need to establish this for

r irrational.

Corollary. (Example 8-8) For r irrational, d
dx [xr] = rxr−1.
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