Numerical Analysis

Chapter 2. Solutions of Equations in One Variable
2.2. Fixed-Point Iteration—Proofs of Theorems
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Theorem 2.3

Theorem 2.3 (continued)

Theorem 2.3.
(i) If g € Cla, b] and g(x) € [a, b] for all x € [a, b], then g has
at least on fixed point in [a, b].
(i) If, in addition, g’(x) exists on (a, b) and a positive constant
k < 1 exists with |g’(x)| < k for all x € (a, b), then there is
exactly on fixed point in [a, b].
Proof (continued). (ii) ASSUME that p and g are distinct fixed points
in [a, b]. If p # g, then the Mean Value Theorem (see my online notes for
Calculus 1 [MATH 1910] on Section 4.2. The Mean Value Theorem; see
Theorem 4.4) implies that a number ¢ exists between p and ¢ and hence
in [a, b] with g(p) ~ 8(q) = g'(£). Thus, since |g’(x)| < k by hypothesis,

lp—ql =1g(p) — g(a)l = [&'(€)llp—ql < klp—al <|p—aql, a
CONTRADICTION. So the assumption that p and g are distinct fixed
points if false, and hence g has exactly one fixed point in [a, b], as

claimed. O
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Theorem 2.3

Theorem 2.3

Theorem 2.3.
(i) If g € Cla, b] and g(x) € [a, b] for all x € [a, b], then g has
at least on fixed point in [a, b].
(i) If, in addition, g’(x) exists on (a, b) and a positive constant
k < 1 exists with |g’(x)| < k for all x € (a, b), then there is
exactly on fixed point in [a, b].
Proof. (i) If g(a) =1 or g(b) = b, then g has a fixed point at an
endpoint of [a, b]. If not, then g(a) > a and g(b) < b. The function
h(x) = g(x) — x is continuous on [g, b], with

h(a) = g(a) —a > 0 and h(b) = g(b) — b < 0.

The Intermediate Value Theorem (see my online notes for Calculus 1
[MATH 1910] on Section 2.5. Continuity; see Theorem 2.11) implies that
there is p € (a, b) for which h(p) = 0. The number p is a fixed point for g
because 0 = h(p) = g(p) — p, or g(p) = p.
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Theorem 2.4

Theorem 2.4

Theorem 2.4. Fixed-Point Theorem.

Let g € C[a, b] be such that g(x) € [a, b] for all x € [a, b]. Suppose, in
addition, that g’ exists on (a, b) and that a constant 0 < k < 1 exists with
lg’'(x)| < k for all x € (a, b). Then for any number py € [a, b], the
sequence defined by p, = g(pn—1), for n € N, converges to the unique
fixed point p € [a, b].

Proof. By Theorem 2.3(ii) there is unique point p in [a, b] with g(p) = p.
Since g maps [a, b] into itself, the sequence {p,}°°, is defined for all
n>0 and p, € [a, b] for all n. Since |g’(x)| < k, then by the Mean Value
Theorem we have for each n that

|pn — p| = lg(pn-1) — &(p)| = |&'(€)lPn-1 — p| < Kklpn-1— pl,
for some &, between p,_1 and p (so that &, € (a,b)). This inequality then
implies
Pn— Pl < klpn-1—p| < Klpn2—p| <~ < K"|po—p|l.  (2.4)
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Theorem 2.4 (continued)

Corollary 2.5

Theorem 2.4. Fixed-Point Theorem.

Let g € C[a, b] be such that g(x) € [a, b] for all x € [a, b]. Suppose, in
addition, that g’ exists on (a, b) and that a constant 0 < k < 1 exists with
lg’'(x)| < k for all x € (a, b). Then for any number py € [a, b], the
sequence defined by p, = g(pn—1), for n € N, converges to the unique n€N.
fixed point p € [a, b].

Corollary 2.5. If g satisfies the hypotheses of Theorem 2.4, then bounds
for the error involved in using p, to approximate p are given by
n

lpn — p| < k"max{po —a,b— po} and |p, — p| < |p1 — pol for all

1—k

Proof. Notice for py € [a, b], pp — a is the distance from pg to the
left-hand endpoint of [a, b] and b — pg is the distance from py to the
right-hand endpoint of [a, b]. Hence for p, py € [a, b] we have

lpo — p| < max{po — a,b— po}. So from Inequality (2.4) in the proof of
Theorem 2.4 we have |p, — p| < k"|po — p| < k"max{pp — a,b — pp}.
Since |g'(x)| < k, then by the Mean Value Theorem we have for each n
that

Proof (continued). ... This inequality then implies

1pn— p| < klpn-1—p| < K?|ppo—pl < - <Kk"lpp—p|.  (2.4)

Since 0 < k < 1 then lim,_ o k" = 0 and so

lim |pn —p| < lim k"|pg — p| = 0.
n—oo n—oo
|Pnt1 = Pnl = |&(Pn) — &(Pn—1)| = 18" (n)llPn = Pn-1| < k|Pn — Pn—1;
Hence, {pn}32, converges (by the definition of limit of a sequence) to
fixed point p, as claimed. O

for some &, between p, and p,_1 (so that &, € (a, b)).
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Corollary 2.5 Corollary 2.5

Corollary 2.5 (continued 1)

Corollary 2.5. If g satisfies the hypotheses of Theorem 2.4, then bounds
for the error involved in using p, to approximate p are given by

n
lpn — p| < k" max{py — a,b — po} and |p, — p| <
neN.

T k|p1 — pol for all

Proof (continued). lterating this process we have for n > 1 that

|pn+1 - pnl < k|pn - pn—1| < k2|pn—1 - pn—2| <. < kn|P1 - P0|-

Thus for m > n > 1 we have

‘Pm_Pn’ = ’Pm_Pm—l‘FPm—l_"'—Pn—&-l—Pn‘
< |pm — Pm—1| + |Pm—1 — Pm—2| + -+ |pnt1 — Pal
< k" pr—pol + k" ?|py — po| + -+ + K"|p1 — pol
= Kk'pr—pol(L4+k+ K+ k™),
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Corollary 2.5 (continued 2)

Corollary 2.5. If g satisfies the hypotheses of Theorem 2.4, then bounds
for the error involved in using p, to approximate p are given by
n

lpn — p| < k" max{pyo — a,b — po} and |p, — p| <
neN.

Proof (continued). As seen in the proof of Theorem 2.3, the sequence
{pPn}>2, converges of p, and so

1= k|p1 — po| for all

m—n—1
P pnl = lim |Pm—pal < lim k"[p1—po| Y K
kn
1k

IA

o0
K"|py— po| Y K = |p1 = pol

i=0
since Y220 k' = 1/(1 — k) because this is the sum of a geometric series
with ratio k where 0 < k < 1. This is the claimed bound on |p — p,|. [
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