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Chapter 2. Solutions of Equations in One Variable
2.2. Fixed-Point Iteration—Proofs of Theorems
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Theorem 2.3

Theorem 2.3

Theorem 2.3.

(i) If g ∈ C [a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has
at least on fixed point in [a, b].

(ii) If, in addition, g ′(x) exists on (a, b) and a positive constant
k < 1 exists with |g ′(x)| ≤ k for all x ∈ (a, b), then there is
exactly on fixed point in [a, b].

Proof. (i) If g(a) = 1 or g(b) = b, then g has a fixed point at an
endpoint of [a, b]. If not, then g(a) > a and g(b) < b. The function
h(x) = g(x)− x is continuous on [q, b], with

h(a) = g(a)− a > 0 and h(b) = g(b)− b < 0.

The Intermediate Value Theorem (see my online notes for Calculus 1
[MATH 1910] on Section 2.5. Continuity; see Theorem 2.11) implies that
there is p ∈ (a, b) for which h(p) = 0. The number p is a fixed point for g
because 0 = h(p) = g(p)− p, or g(p) = p.
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Theorem 2.3

Theorem 2.3 (continued)

Theorem 2.3.

(i) If g ∈ C [a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has
at least on fixed point in [a, b].

(ii) If, in addition, g ′(x) exists on (a, b) and a positive constant
k < 1 exists with |g ′(x)| ≤ k for all x ∈ (a, b), then there is
exactly on fixed point in [a, b].

Proof (continued). (ii) ASSUME that p and q are distinct fixed points
in [a, b]. If p 6= q, then the Mean Value Theorem (see my online notes for
Calculus 1 [MATH 1910] on Section 4.2. The Mean Value Theorem; see
Theorem 4.4) implies that a number ξ exists between p and q and hence

in [a, b] with
g(p)− g(q)

p − q
= g ′(ξ). Thus, since |g ′(x)| ≤ k by hypothesis,

|p − q| = |g(p)− g(q)| = |g ′(ξ)||p − q| ≤ k|p − q| < |p − q|, a
CONTRADICTION. So the assumption that p and q are distinct fixed
points if false, and hence g has exactly one fixed point in [a, b], as
claimed.
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Theorem 2.4

Theorem 2.4

Theorem 2.4. Fixed-Point Theorem.
Let g ∈ C [a, b] be such that g(x) ∈ [a, b] for all x ∈ [a, b]. Suppose, in
addition, that g ′ exists on (a, b) and that a constant 0 < k < 1 exists with
|g ′(x)| ≤ k for all x ∈ (a, b). Then for any number p0 ∈ [a, b], the
sequence defined by pn = g(pn−1), for n ∈ N, converges to the unique
fixed point p ∈ [a, b].

Proof. By Theorem 2.3(ii) there is unique point p in [a, b] with g(p) = p.
Since g maps [a, b] into itself, the sequence {pn}∞n=0 is defined for all
n ≥ 0 and pn ∈ [a, b] for all n. Since |g ′(x)| ≤ k, then by the Mean Value
Theorem we have for each n that

|pn − p| = |g(pn−1)− g(p)| = |g ′(ξn)||pn−1 − p| ≤ k|pn−1 − p|,

for some ξn between pn−1 and p (so that ξn ∈ (a, b)). This inequality then
implies

|pn − p| ≤ k|pn−1 − p| ≤ k2|pn−2 − p| ≤ · · · ≤ kn|p0 − p|. (2.4)
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Theorem 2.4

Theorem 2.4 (continued)

Theorem 2.4. Fixed-Point Theorem.
Let g ∈ C [a, b] be such that g(x) ∈ [a, b] for all x ∈ [a, b]. Suppose, in
addition, that g ′ exists on (a, b) and that a constant 0 < k < 1 exists with
|g ′(x)| ≤ k for all x ∈ (a, b). Then for any number p0 ∈ [a, b], the
sequence defined by pn = g(pn−1), for n ∈ N, converges to the unique
fixed point p ∈ [a, b].

Proof (continued). . . . This inequality then implies

|pn − p| ≤ k|pn−1 − p| ≤ k2|pn−2 − p| ≤ · · · ≤ kn|p0 − p|. (2.4)

Since 0 < k < 1 then limn→∞ kn = 0 and so

lim
n→∞

|pn − p| ≤ lim
n→∞

kn|p0 − p| = 0.

Hence, {pn}∞n=0 converges (by the definition of limit of a sequence) to
fixed point p, as claimed.
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Corollary 2.5

Corollary 2.5

Corollary 2.5. If g satisfies the hypotheses of Theorem 2.4, then bounds
for the error involved in using pn to approximate p are given by

|pn − p| ≤ kn max{p0 − a, b − p0} and |pn − p| ≤ kn

1− k
|p1 − p0| for all

n ∈ N.

Proof. Notice for p0 ∈ [a, b], p0 − a is the distance from p0 to the
left-hand endpoint of [a, b] and b − p0 is the distance from p0 to the
right-hand endpoint of [a, b]. Hence for p, p0 ∈ [a, b] we have
|p0 − p| ≤ max{p0 − a, b − p0}. So from Inequality (2.4) in the proof of
Theorem 2.4 we have |pn − p| ≤ kn|p0 − p| ≤ kn max{p0 − a, b − p0}.

Since |g ′(x)| ≤ k, then by the Mean Value Theorem we have for each n
that

|pn+1 − pn| = |g(pn)− g(pn−1)| = |g ′(ξn)||pn − pn−1| ≤ k|pn − pn−1|,

for some ξn between pn and pn−1 (so that ξn ∈ (a, b)).
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Corollary 2.5

Corollary 2.5 (continued 1)

Corollary 2.5. If g satisfies the hypotheses of Theorem 2.4, then bounds
for the error involved in using pn to approximate p are given by

|pn − p| ≤ kn max{p0 − a, b − p0} and |pn − p| ≤ kn

1− k
|p1 − p0| for all

n ∈ N.

Proof (continued). Iterating this process we have for n ≥ 1 that

|pn+1 − pn| ≤ k|pn − pn−1| ≤ k2|pn−1 − pn−2| ≤ · · · ≤ kn|p1 − p0|.

Thus for m > n ≥ 1 we have

|pm − pn| = |pm − pm−1 + pm−1 − · · · − pn+1 − pn|
≤ |pm − pm−1|+ |pm−1 − pm−2|+ · · ·+ |pn+1 − pn|
≤ km−1|p1 − p0|+ km−2|p1 − p0|+ · · ·+ kn|p1 − p0|
= kn|p1 − p0|(1 + k + k2 + · · ·+ km−n−1).
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Corollary 2.5

Corollary 2.5 (continued 2)

Corollary 2.5. If g satisfies the hypotheses of Theorem 2.4, then bounds
for the error involved in using pn to approximate p are given by

|pn − p| ≤ kn max{p0 − a, b − p0} and |pn − p| ≤ kn

1− k
|p1 − p0| for all

n ∈ N.

Proof (continued). As seen in the proof of Theorem 2.3, the sequence
{pn}∞n=0 converges of p, and so

|p − pn| = lim
m→∞

|Pm − pn| ≤ lim
m→∞

kn|p1 − p0|
m−n−1∑

i=1

k i

≤ kn|p1 − p0|
∞∑
i=0

k i =
kn

1− k
|p1 − p0|

since
∑∞

i=0 k i = 1/(1− k) because this is the sum of a geometric series
with ratio k where 0 < k < 1. This is the claimed bound on |p − pn|.
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