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Chapter 3. Interpolation and Polynomial Approximation
3.1. Interpolation and the Lagrange Polynomial—Proofs of Theorems
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Theorem 3.3

Theorem 3.3. Suppose x0, x1, . . . , xn are distinct numbers in the interval
[a, b] and f ∈ Cn+1[a, b]. Then for each x in [a, b], a number ξ(x)
between min{x0, x1, . . . , xn}, and the max{x0, x1, . . . , xn} and hence in
(a, b), exists with

f (x) = P(x) +
f (n+1)(ξ(x))

(n + 1)!
(x − x0)(x − x1) · · · (x − xn),

where P(x) is the nth Lagrange interpolating polynomial.

Proof. Notice first for x = xk for any k = 0, 1, . . . , n, that f (xk) = P(xk)
regardless of the value of ξ(xk). If x 6= xk for k = 0, 1, . . . , n then define
function g for t ∈ [a, b] as

g(t) = f (t) − P(t) − (f (x) − P(x))
(t − x0)(t − x1) · · · (t − xn)

(x − x0)(x − x1) · · · (x − xn)

= f (t) − P(t) − (f (x) − P(x))
n∏

i=0

(t − xi )

(x − xi )
.
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Theorem 3.3 (continued 1)

Proof (continued). For t = xk we have

g(xk) = f ((xk)) − P((xk)) − (f (x) − P(x))
n∏

i=0

((xk) − xi )

(x − xi )

= 0 − (f (x) − P(x)) · 0 = 0.

Moreover, with t = x 6= xi for i = 0, 1, . . . , n (think of x as otherwise
arbitrary, but fixed) then

g(x) = f ((x)) − P((x)) − (f (x) − P(x))
n∏

i=0

((x) − xi )

(x − xi )

= f (x) − P(x) − (f (x) − P(x)) · 1 = 0.

That is, g ∈ Cn+1[a, b] and g is zero at the n + 2 distinct numbers
x , x0, x1, . . . , xn. By the Generalized Rolle’s Theorem (Theorem 1.10),
there exists a number ξ(x) = ξ ∈ (a, b) (based on fixed x) for which
g (n+1)(ξ) = 0.
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Theorem 3.3 (continued 2)

Proof (continued). So differentiating g(t) n + 1 times and then taking
t = ξ we have

0 = g (n+1)(ξ) = f (n+1)(ξ) − P(n+1)(ξ)

−(f (x) − P(x))
d (n+1)

dt(n+1)

[
n∏

i=0

(t − xi )

(x − xi )

]
t=ξ

. (∗)

But P is a polynomial of degree at most n, so the (n + 1)th derivative,

P(n+1), is the zero function. Also,
n∏

i=0

(t − xi )

(x − xi )
is a polynomial in t of

degree (n + 1), so

n∏
i=0

(t − xi )

(x − xi )
=

(
1∏n

i=0(x − xi )

)
tn+1 + (lower-degree terms in t), . . .
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Theorem 3.3 (continued 3)

Proof (continued). . . . and so differentiating n + 1 times with respect to
t gives

dn+1

dtn+1

[
n∏

i=0

t − xi

x − xi

]
=

(n + 1)!∏n
i=0(x − xi )

.

Now (∗) becomes

0 = f (n+1)(ξ) − 0 − (f (x) − P(x))
(n + 1)!∏n
i=0(x − xi )

,

and so

f (x) = P(x) +
f (n+1)(ξ)

(n + 1)!

n∏
i=0

(x − xi ).

Now this has been demonstrated for x 6= xi where i = 0, 1, . . . , n, but it
also “clearly” holds for these xi as well and hence holds for all x , as
claimed.
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