Numerical Analysis

Chapter 3. Interpolation and Polynomial Approximation

3.1. Interpolation and the Lagrange Polynomial—Proofs of Theorems

Table of contents

Theorem 3.3

Theorem 3.3

Theorem 3.3. Suppose x_0, x_1, \ldots, x_n are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then for each x in [a, b], a number $\xi(x)$ between $\min\{x_0, x_1, \ldots, x_n\}$, and the $\max\{x_0, x_1, \ldots, x_n\}$ and hence in (a, b), exists with

 $f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n),$

where P(x) is the *n*th Lagrange interpolating polynomial.

Proof. Notice first for $x = x_k$ for any k = 0, 1, ..., n, that $f(x_k) = P(x_k)$ regardless of the value of $\xi(x_k)$. If $x \neq x_k$ for k = 0, 1, ..., n then define function g for $t \in [a, b]$ as

$$g(t) = f(t) - P(t) - (f(x) - P(x)) \frac{(t - x_0)(t - x_1) \cdots (t - x_n)}{(x - x_0)(x - x_1) \cdots (x - x_n)}$$
$$= f(t) - P(t) - (f(x) - P(x)) \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}.$$

Theorem 3.3

Theorem 3.3. Suppose x_0, x_1, \ldots, x_n are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then for each x in [a, b], a number $\xi(x)$ between $\min\{x_0, x_1, \ldots, x_n\}$, and the $\max\{x_0, x_1, \ldots, x_n\}$ and hence in (a, b), exists with $f(n+1)(\xi(x))$

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n),$$

where P(x) is the *n*th Lagrange interpolating polynomial.

Proof. Notice first for $x = x_k$ for any k = 0, 1, ..., n, that $f(x_k) = P(x_k)$ regardless of the value of $\xi(x_k)$. If $x \neq x_k$ for k = 0, 1, ..., n then define function g for $t \in [a, b]$ as

$$g(t) = f(t) - P(t) - (f(x) - P(x)) \frac{(t - x_0)(t - x_1) \cdots (t - x_n)}{(x - x_0)(x - x_1) \cdots (x - x_n)}$$
$$= f(t) - P(t) - (f(x) - P(x)) \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}.$$

Theorem 3.3 (continued 1)

Proof (continued). For $t = x_k$ we have

$$g(x_k) = f((x_k)) - P((x_k)) - (f(x) - P(x)) \prod_{i=0}^{n} \frac{((x_k) - x_i)}{(x - x_i)}$$

= 0 - (f(x) - P(x)) \cdot 0 = 0.

Moreover, with $t = x \neq x_i$ for i = 0, 1, ..., n (think of x as otherwise arbitrary, but fixed) then

$$g(x) = f((x)) - P((x)) - (f(x) - P(x)) \prod_{i=0}^{n} \frac{((x) - x_i)}{(x - x_i)}$$
$$= f(x) - P(x) - (f(x) - P(x)) \cdot 1 = 0.$$

That is, $g \in C^{n+1}[a,b]$ and g is zero at the n+2 distinct numbers x,x_0,x_1,\ldots,x_n . By the Generalized Rolle's Theorem (Theorem 1.10), there exists a number $\xi(x)=\xi\in(a,b)$ (based on fixed x) for which $g^{(n+1)}(\xi)=0$.

Theorem 3.3 (continued 2)

Proof (continued). So differentiating g(t) n+1 times and then taking $t=\xi$ we have

$$0 = g^{(n+1)}(\xi) = f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - (f(x) - P(x)) \frac{d^{(n+1)}}{dt^{(n+1)}} \left[\prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)} \right]_{t=\xi} .$$
 (*)

But P is a polynomial of degree at most n, so the (n+1)th derivative, $P^{(n+1)}$, is the zero function. Also, $\prod_{i=0}^n \frac{(t-x_i)}{(x-x_i)}$ is a polynomial in t of degree (n+1), so

$$\prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} = \left(\frac{1}{\prod_{i=0}^{n} (x-x_i)}\right) t^{n+1} + (\text{lower-degree terms in } t), \dots$$

Numerical Analysis March 15, 2022

5 / 6

Theorem 3.3 (continued 3)

Proof (continued). ... and so differentiating n + 1 times with respect to t gives

$$\frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^{n} \frac{t - x_i}{x - x_i} \right] = \frac{(n+1)!}{\prod_{i=0}^{n} (x - x_i)}.$$

Now (*) becomes

$$0 = f^{(n+1)}(\xi) - 0 - (f(x) - P(x)) \frac{(n+1)!}{\prod_{i=0}^{n} (x - x_i)},$$

and so

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i).$$

Now this has been demonstrated for $x \neq x_i$ where i = 0, 1, ..., n, but it also "clearly" holds for these x_i as well and hence holds for all x, as claimed.