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Chapter 2. Solutions of Equations

in One Variable

2.1 The Bisection Method

Note. In this section we iteratively cut an interval in half to approximate the

solution to an equation involving a continuous function.

Note. Suppose f is continuous on the interval [a, b] with f(a) and f(b) of opposite

signs. By the Intermediate Value Theorem, there is p ∈ (a, b) such that f(p) = 0.

The Intermediate Value Theorem is stated in Section 1.11 as:

Theorem 1.11. Intermediate Value Theorem.

If f ∈ C[a, b] and K is any number between f(a) and f(b), then there exists a

number c in (a, b) for which f(c) = K.

You see the Intermediate Value Theorem first in Calculus 1 (MATH 1910); see

my online Calculus 1 notes on Section 2.5. Continuity (see Theorem 2.11). A

proof is given in Analysis 1 (MATH 4217/5217); see my online Analysis 1 notes

on Section 4.1. Limits and Continuity (see Corollary 4-9). Now the Intermediate

Value Theorem gives the existence of number c, but it says nothing about how to

find it.

Definition. For f a real-valued function defined on a subset of R, a value p such

that f(p) = 0 is called a zero of f .

Note. Burden, Fairs, and Burden refer to a zero of a function also as a “root” of the

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c2s5-14E.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/4-1.pdf
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function. This terminology is common when dealing the a polynomial function, but

the term “zero” is more often used to indicate a value where any type of function

(not just a polynomial function) equals zero.

Note. Under the conditions hypothesized in the Intermediate Value Theorem, we

repeatedly cut intervals in half (i.e., we bisect intervals) in search of the location of

the zero of a continuous function. Starting with the interval [a1, b1] = [a, b] where

f(a1) and f(b1) have opposite signs, we consider the midpoint p1 = (a1 + b1)/2. If

f(p1) = 0 then we take p = p1, otherwise f(p1) 6= 0 and we use the sign of f(p1) to

make a decision:

(1) If f(p1) and f(a1) have the same sign, then set a2 = p1 and set b2 = b1.

(2) if f(p1) and f(a1) have opposite signs, then set a2 = a1 and set b2 = p1.

Next, we let p2 = (a1 + b1)/2 and iterate the process. This is illustrated in Figure

2.1 in which case f(p1) and f(a1) have opposite signs so that a2 = a1 and b2 = p1;

next, f(p2) and f(a1) have the same sign so that a3 = p2 and b3 = b2; then (not in

Figure 2.1) f(p3) has the same sign as a3 so that a4 = p3 and b4 = b3.
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Note/Definition. The Bisection Method is given algorithmically as follows. To

find a solution to f(x) = 0 for continuous function f on the interval [a, b], where

f(a) and f(b) have opposite signs:

INPUT: endpoints a, b; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message failure.

Step 1. Set i = 1;

FA = f(a).

Step 2. While i ≤ N0 do Steps 3–6.

Step 3. Set p = 1 + (b− a)/2;

FP = f(p).

Step 4. If FP = 0 or (b− a)/2 < TOL then

OUTPUT(p)

STOP.

Step 5. Set i = i + 1.

Step 6. If FA · FP > 0 then set a = p

FA = FP

else set b = p.

Step 7. OUTPUT (‘Method failed after N0 iterations, N0 =’ N0)

STOP.

Note. The stopping criteria of the Bisection Method is given either by the param-

eter N0 (since the algorithm ends after N0 steps, by Step 2) or by the tolerance

TOL (since the algorithm ends after (b − a)/2 < TOL, by Step 4). Alternatives

to these stopping criteria include considering the relative error |pn − pn−1|/|pn|
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(where pn 6= 0), which could be required to be less than some given tolerance. Bur-

den, Faires, and Burden mention stopping conditions related to making |pn− pn−1|

less than a given tolerance (though they observe that a sequence can satisfy this

condition and yet not be convergent; the harmonic series behaves like this and is

mentioned in Exercise 2.1.19). They also mention making |f(pn)| less than a cer-

tain tolerance (though this makes the value of f “close to” 0 as desired, it does

not guarantee that pn is close to p, as is desired; Exercise 2.1.20 illustrates this by

considering the function f(x) = (x− 1)10).

Example 2.1.1. Show that f(x) = x3 + 4x2 − 10 = 0 has a root in the interval

[1, 2] and use the Bisection Method to determine an approximation to the root that

is accurate to within 10−4.

Solution. First, f is a polynomial function and so is continuous on its domain R.

Since f(1) = −5 < 0 and f(2) = 14 > 0, then the Intermediate Value Theorem

implies that f has a zero in [1, 2]. Notice that you probably don’t know how to

algebraically find the root of f in [1, 2]. We start the bisection method with p1 = 1.5.

Since f(1.5) = 2.375 > 0, then we take the left-hand half of [1, 2] to get [1, 1.5]

and p2 = 1.25. Next, f(1.25) = −1.796875 < 0, so we take the right-hand half of

[1, 1, 5] to get [1.25, 1.5] and p3 = 1.375. We now rely on Table 2.1 for the next

several values of an, bn, and pn. Notice that after 13 iterations, p13 = 1.365112305.

Since p, p13 ∈ [a14, b14] then |p− p13| < |b14 − a14| = |1.365234375− 1.365112305| =

0.000122070. Also, |a14| < |p| (since a14 > 0) so that the relative error is
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|p− p13|
|p|

<
|b14 − a14|
|a14|

=
0.000122070

1.365112305
≤ 9.0× 10−5 < 1× 10−4.

To nine decimal places, p = 1.365230013, so p13 is accurate to three decimal places.

Note. Another application of the Bisection Method can be found in Mathematical

Statistics 2 (MATH 4057/5057). It is used in finding confidence intervals in Section

4.3. Confidence Intervals for Parameters of Discrete Distributions.

Note. Burden, Faires, and Burden comment (see page 51):

“The Bisection method, though conceptually clear, has significant

drawbacks. It is relatively slow to converge (that is, N may become

quite large before |p − pN | is sufficiently small), and a good interme-

diate approximation might be inadvertently discarded. [In fact, in the

previous example we see from Table 2.1 that p9 is closer to the actual

value of p that is p13; p9 is accurate to five decimal places, whereas p13

is only accurate to three decimal places.] However, the method has the

important property that it always converges to a solution. . . ”

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-4-3.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-4-3.pdf
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The next theorem puts a bound on the the error used in approximating p with pn.

Theorem 2.1. Suppose f ∈ C[a, b] and f(a) · f(b) < 0. The Bisection Method

generates a sequence {pn}∞n=1 approximating a zero p of f with error

|pn − p| ≤ b− a

2n
when n ≥ 1.

Note. Recall the “big oh” notation of Section 1.3. We state Definition 1.18 again.

Definition 1.18 Suppose {βn}∞n=1 is a sequence known to converge to zero and

{αn}∞n=1 converges to a number α. If a positive constant K exists with |αn − α| ≤

K|βn| for large n, then we say that {αn}∞n=1 converges to α with rate, or order,

of convergence O(βn). (This expression is read “big oh of βn”.) It is indicated by

writing αn = α + O(βn).

This idea is encountered in Calculus 2 (MATH 1920). In my online notes for

Calculus 2 on Section 7.4. Relative Rates of Growth, we have the following.

Definition. Let f(x) and g(x) be positive for x sufficiently large. Then f is of at

most order of g as x →∞ if there is a positive integer M for which f(x)/g(x) ≤ M

for x sufficiently large. We indicate this by writing f = O(g) (“f is big-oh of g).

Since Theorem 2.1 gives |pn − p| ≤ b− a

2n
when n ≥ 1, we have that the sequence

{pn}∞n=1 converges to p with the rate of convergence O(1/2n); that is, pn = p +

O(1/2n).
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