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2.2. Fixed-Point Iteration

Note. In this section we give an algorithm to find a fixed point of a function.
The algorithm does not work for all functions, but works for functions which are

7

“contractions.” We also relate fixed points of certain functions to zeros of others

(and conversely).

Definition. A number p is a fized point for a given function g is g(p) = p.

Note. Function f has a fixed point at x = p is and only if function g(x) = f(x) — =z
has a zero of x = p. Therefore we can use a technique for finding the zeros of a
function (such as the Bisection Method of the previous section) to find fixed points
of a function, or we can use a technique for finding the fixed points of a function

(like fixed-point iteration of this section) to find the zeros of a function.

Note. A function may have no fixed points (for example, f(x) =z + 1) or it may
have multiple fixed points (for example f(x) = 23 has fixed points x = —1, 2z = 0,
and x = 1). To successfully apply a numerical technique, we need to know that a
fixed point exists. We will consider the cases where a unique fixed point exists and
we will give a technique that is guaranteed to find this fixed point. This leads us

to the following result.
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Theorem 2.3.

(i) If g € Cla,b] and g(x) € [a,b] for all = € [a,b], then g has at least on fixed

point in [a, b].

(ii) If, in addition, ¢'(z) exists on (a,b) and a positive constant k < 1 exists with

|d'(z)| < k for all z € (a,b), then there is exactly on fixed point in [a, b].

Note. Figure 2.3 illustrates a situation in which Theorem 2.3 applies. Notice on
the interval [a, b] that function g has a unique fixed point = = p and that function

g has tangent lines on [a, b] with slopes between —1 and 0 (so that |¢'(x)| < 1 on

(a,b)).
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Figure 2.3

Example 2.2.2. Show that g(z) = (22 — 1)/3 has a unique fixed point on the

interval [—1,1].

Solution. First, g is continuous on [—1,1], so by the Extreme Value Theorem

(see my online Calculus 1 [MATH 1910] notes on Section 4.1. Extreme Values


https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s1-14E.pdf
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of Functions on Closed Intervals; notice Theorem 4.1) g has a maximum and a
minimum on [—1, 1]. By the Local Extreme Values Theorem (see Theorem 4.2 in the
section of Calculus 1 notes just mentioned), the extrema of g on [—1, 1] occur either
at critical points in [—1,1] or at the endpoints —1 and 1. Since ¢'(x) = 22/3 then
x = 0 is the only critical point, and g(—1) =0, ¢(0) = —1/3, and g(1) = 0. Hence
the maximum of g on [—1,1] is 0 and the minimum is —1/3. So for all x € [-1,1]
we have g(x) € [-1/3,0] C [-1,1]. Therefore, by Theorem 2.3(i) we know that g
has at least one fixed point in [—1,1]. In addition, |¢'(z)| = |22/3| < 2/3 =k < 1

for all z € [—1, 1], so by Theorem 2.3(ii) the fixed point of g in [—1, 1] is unique. O

Note. We can find the fixed points of g(z) = (% —1)/3 from Example 2.2.2 using

the quadratic equation. Setting g(p) = (p*> —1)/3 = p we have p*> —3p—1 =0 and
—(=3) £ /(=3 —4(1)(-1) _3£V13

2(1) 2
[—1,1]is p = (3 — V13)/2 ~ —0.3028.

SO p = . S0 the unique fixed point of g in
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Figure 2.4

Notice that p = (34+/13)/2 ~ 3.3028 € [3, 4], so that g also has a fixed point in the
interval [3, 4]. Notice that g(4) = 5 so that g(z) is not in [3, 4] for all z € [3, 4] (so the
hypotheses of Theorem 2.3(i) are not satisfied). Also |¢'(4)] = [2(4)/3] = 8/3 > 1,


https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s1-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s1-14E.pdf
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so the hypotheses of Theorem 2.3(ii) are not satisfied either! Yet, g still has a fixed
point on [3,4]. See Figure 2.4. That is, we have that the hypotheses of Theorem
2.3 are sufficient to guarantee a unique fixed point, but they are not necessary for

the existence of a unique fixed point.

Note. We are interested in approximating a fixed point of continuous function g.
The technique of fized-point iteration is based on the sequence {p,} with initial
approximation py and p, inductively defined as p, = ¢g(p,—1) for n > 1. If the

sequence converges to p and g is continuous, then
p=lim p, = lim g(p,—1) =g (hm pn_1> = 9(p),
n—oo n—oo n—oo
and z = p is a fixed point of g. The technique is illustrated in Figure 2.6. Below in

Theorem 2.4 we will see a condition on g that insures the sequence {p,} converges

to a fixed point p of g. First we state the technique as an algorithm.
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Figure 2.6

Algorithm 2.2. The Fized-Point [teration method is given algorithmically as

follows. To find a solution to p = g(p) given an initial approximation py:
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INPUT: initial approximation pg; tolerance T'OL; maximum number of iterations
Np.
OUTPUT approximate solution p or message of failure.
Step 1. Set i =1.
Step 2. While 1 < Ny do Steps 3-6.
Step 3. Set p = g(py). (Compute p;.)
Step 4. If |p — po| < TOL then
OUTPUT(p); (The procedure was successful.)
STOP.
Step 5. Set ¢ =17+ 1.
Step 6. Set pg = p. (Update py.)
Step 7. OUTPUT (‘Method failed after IVy iterations, Ny =" Ny)
STOP.

Theorem 2.4. Fixed-Point Theorem. Let g € Cla, b] be such that g(x) € [a, b]
for all x € [a,b]. Suppose, in addition, that ¢’ exists on (a,b) and that a constant
0 < k < 1 exists with |¢'(x)| < k for all z € (a,b). Then for any number p, € [a, b],
the sequence defined by p, = g(p,—1), for n € N, converges to the unique fixed

point p € [a, b].

Corollary 2.5. If g satisfies the hypotheses of Theorem 2.4, then bounds for the

error involved in using p, to approximate p are given by |p, — p| < k" max{p; —

n

1—k

a,b—po} and |p, —p| < |p1 — po| for all n € N.
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Note. We see from Corollary 2.5 that if |¢'(x)| < k where k is “small,” then the
convergence of the sequence {p,} will be fast and we can get better approximations
with fewer iterations of Algorithm 2.2. One way to minimize k is to consider g on
a smaller interval [c, d] C [a,b]; however, this requires some up-front knowledge of

location of fixed point p.

Note. The Fixed-Point Theorem (Theorem 2.4) is based on the general Contrac-
tion Mapping Theorem. The condition |¢’(x)| < k < 1 on [a, b] implies that g is a
“contraction” on [a, b]. A contraction is a function that brings any two points closer
together (in our context, this means |g(x1) — g(x2)| < |x1 —x2| for all 1, 9 € [a, b]).
The Contraction Mapping Theorem is covered in Fundamentals of Functional Anal-
ysis (MATH 5740), though specific applications are not presented in that class. See
my online notes on Section 2.12. Fixed Points and Contraction Mappings; notice
Theorem 2.44. It is also covered in Real Analysis 2 (MATH 5220) in the setting
of metric spaces where it is called the Banach Contraction Principle; see my on-
line notes for Real Analysis 2 on Section 10.3. The Banach Contraction Principle;
notice Theorem 10.3.B. It may also be covered in Applied Math 1 (MATH 5610).
See my online notes for Applied Math 1 (these are the version of the notes used
in the fall 1996 class) on Section 3.3. The Contraction Mapping Theorem; notice
Theorem 3.3.1.

Example 2.2.A. (Based on the “Illustration” on page 60.) The equation x° +

42> — 10 = 0 has a unique root in [1,2]. We rearrange this equation in such a way


https://faculty.etsu.edu/gardnerr/Func/notes/2-12.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/10-3.pdf
https://faculty.etsu.edu/gardnerr/Differential-Equations/DE-Waltman-notes/Waltman-3-3.pdf
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as to use Fixed-Point Iteration to solve the equation. Notice that 23 +42%—10 =0

is equivalent to z%(z +4) = 10 or 22 = 10/(x + 4) or, since we are interested in a

10 \"
positive solution, r = ( n 4) . We can then solve this equation by finding a
x
10 \ /2
fixed point of g4(x) = <ﬂ> — v/10(z+4)"'/? (notice that Burden, Faires, and
T

Burden consider five different approaches to this problem, some of which work and

—1 —/10
some of which do not). Notice that gj(z) = V10 <7> (z+4)7%?% = SRR
—v1 V1
and for z € [1,2] we have |g)(z)| = L < L ~ 0.1414. Therefore

2(x +4)32| = 2(5)3/2
lg4(z)] < 0.15 for x € [1,2]. Also, g)(z) < 0 for z € [1, 2], so g4 is decreasing on [1, 2]

and the maximum of g4 on this interval is g4(1) = V/10((1) +4)7Y2 = \/2 ~ 1.4142
and the minimum is g4(2) = v/10((2) + 4)~'/2 = /5/3 a 1.2910. Therefore g(z) €
[1,2] for x € [1, 2], and the hypotheses of the Fixed-Point Theorem (Theorem 2.4)
are satisfied, so we know that the sequence {p, } converges to the unique fixed point
of g4 (and hence the unique solution to the original equation) in [1,2]. Suppose we
take TTOL = 0.00001 and py = 1.5 in the Fixed-Point Iteration algorithm. We get

the following values:

n Pn |pn - pn—l‘

0 1.5 -

1 1.348399725 0.151600275
1.367376372 0.018976647
1.364957015 0.002419357
1.365264748 0.000307733
1.365225594 0.000039154

S S e e

1.365230576 0.000004983
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So after 6 iterations the Fixed-Point Iteration algorithm terminates (in Step 4)
and outputs 1.365230576, which we know is within 0.000005 < 0.00001 = TOL of
the actual value of the fixed point. Nine more iterations (for a total of 15) gives

the fixed point to 10 decimal places (see Burden, Faires, and Burden’s Table 2.2).
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