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2.2. Fixed-Point Iteration

Note. In this section we give an algorithm to find a fixed point of a function.

The algorithm does not work for all functions, but works for functions which are

“contractions.” We also relate fixed points of certain functions to zeros of others

(and conversely).

Definition. A number p is a fixed point for a given function g is g(p) = p.

Note. Function f has a fixed point at x = p is and only if function g(x) = f(x)−x

has a zero of x = p. Therefore we can use a technique for finding the zeros of a

function (such as the Bisection Method of the previous section) to find fixed points

of a function, or we can use a technique for finding the fixed points of a function

(like fixed-point iteration of this section) to find the zeros of a function.

Note. A function may have no fixed points (for example, f(x) = x + 1) or it may

have multiple fixed points (for example f(x) = x3 has fixed points x = −1, x = 0,

and x = 1). To successfully apply a numerical technique, we need to know that a

fixed point exists. We will consider the cases where a unique fixed point exists and

we will give a technique that is guaranteed to find this fixed point. This leads us

to the following result.
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Theorem 2.3.

(i) If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has at least on fixed

point in [a, b].

(ii) If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists with

|g′(x)| ≤ k for all x ∈ (a, b), then there is exactly on fixed point in [a, b].

Note. Figure 2.3 illustrates a situation in which Theorem 2.3 applies. Notice on

the interval [a, b] that function g has a unique fixed point x = p and that function

g has tangent lines on [a, b] with slopes between −1 and 0 (so that |g′(x)| < 1 on

(a, b)).

Example 2.2.2. Show that g(x) = (x2 − 1)/3 has a unique fixed point on the

interval [−1, 1].

Solution. First, g is continuous on [−1, 1], so by the Extreme Value Theorem

(see my online Calculus 1 [MATH 1910] notes on Section 4.1. Extreme Values

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s1-14E.pdf
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of Functions on Closed Intervals; notice Theorem 4.1) g has a maximum and a

minimum on [−1, 1]. By the Local Extreme Values Theorem (see Theorem 4.2 in the

section of Calculus 1 notes just mentioned), the extrema of g on [−1, 1] occur either

at critical points in [−1, 1] or at the endpoints −1 and 1. Since g′(x) = 2x/3 then

x = 0 is the only critical point, and g(−1) = 0, g(0) = −1/3, and g(1) = 0. Hence

the maximum of g on [−1, 1] is 0 and the minimum is −1/3. So for all x ∈ [−1, 1]

we have g(x) ∈ [−1/3, 0] ⊂ [−1, 1]. Therefore, by Theorem 2.3(i) we know that g

has at least one fixed point in [−1, 1]. In addition, |g′(x)| = |2x/3| ≤ 2/3 = k < 1

for all x ∈ [−1, 1], so by Theorem 2.3(ii) the fixed point of g in [−1, 1] is unique. �

Note. We can find the fixed points of g(x) = (x2− 1)/3 from Example 2.2.2 using

the quadratic equation. Setting g(p) = (p2− 1)/3 = p we have p2− 3p− 1 = 0 and

so p =
−(−3)±

√
(−3)2 − 4(1)(−1)

2(1)
=

3±
√

13

2
. So the unique fixed point of g in

[−1, 1] is p = (3−
√

13)/2 ≈ −0.3028.

Notice that p = (3+
√

13)/2 ≈ 3.3028 ∈ [3, 4], so that g also has a fixed point in the

interval [3, 4]. Notice that g(4) = 5 so that g(x) is not in [3, 4] for all x ∈ [3, 4] (so the

hypotheses of Theorem 2.3(i) are not satisfied). Also |g′(4)| = |2(4)/3| = 8/3 > 1,

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s1-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c4s1-14E.pdf
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so the hypotheses of Theorem 2.3(ii) are not satisfied either! Yet, g still has a fixed

point on [3, 4]. See Figure 2.4. That is, we have that the hypotheses of Theorem

2.3 are sufficient to guarantee a unique fixed point, but they are not necessary for

the existence of a unique fixed point.

Note. We are interested in approximating a fixed point of continuous function g.

The technique of fixed-point iteration is based on the sequence {pn} with initial

approximation p0 and pn inductively defined as pn = g(pn−1) for n ≥ 1. If the

sequence converges to p and g is continuous, then

p = lim
n→∞

pn = lim
n→∞

g(pn−1) = g
(

lim
n→∞

pn−1

)
= g(p),

and x = p is a fixed point of g. The technique is illustrated in Figure 2.6. Below in

Theorem 2.4 we will see a condition on g that insures the sequence {pn} converges

to a fixed point p of g. First we state the technique as an algorithm.

Algorithm 2.2. The Fixed-Point Iteration method is given algorithmically as

follows. To find a solution to p = g(p) given an initial approximation p0:
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INPUT: initial approximation p0; tolerance TOL; maximum number of iterations

N0.

OUTPUT approximate solution p or message of failure.

Step 1. Set i = 1.

Step 2. While i ≤ N0 do Steps 3–6.

Step 3. Set p = g(p0). (Compute pi.)

Step 4. If |p− p0| < TOL then

OUTPUT(p); (The procedure was successful.)

STOP.

Step 5. Set i = i + 1.

Step 6. Set p0 = p. (Update p0.)

Step 7. OUTPUT (‘Method failed after N0 iterations, N0 =’ N0)

STOP.

Theorem 2.4. Fixed-Point Theorem. Let g ∈ C[a, b] be such that g(x) ∈ [a, b]

for all x ∈ [a, b]. Suppose, in addition, that g′ exists on (a, b) and that a constant

0 < k < 1 exists with |g′(x)| ≤ k for all x ∈ (a, b). Then for any number p0 ∈ [a, b],

the sequence defined by pn = g(pn−1), for n ∈ N, converges to the unique fixed

point p ∈ [a, b].

Corollary 2.5. If g satisfies the hypotheses of Theorem 2.4, then bounds for the

error involved in using pn to approximate p are given by |pn − p| ≤ kn max{p0 −

a, b− p0} and |pn − p| ≤ kn

1− k
|p1 − p0| for all n ∈ N.
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Note. We see from Corollary 2.5 that if |g′(x)| ≤ k where k is “small,” then the

convergence of the sequence {pn} will be fast and we can get better approximations

with fewer iterations of Algorithm 2.2. One way to minimize k is to consider g on

a smaller interval [c, d] ⊂ [a, b]; however, this requires some up-front knowledge of

location of fixed point p.

Note. The Fixed-Point Theorem (Theorem 2.4) is based on the general Contrac-

tion Mapping Theorem. The condition |g′(x)| ≤ k < 1 on [a, b] implies that g is a

“contraction” on [a, b]. A contraction is a function that brings any two points closer

together (in our context, this means |g(x1)−g(x2)| < |x1−x2| for all x1, x2 ∈ [a, b]).

The Contraction Mapping Theorem is covered in Fundamentals of Functional Anal-

ysis (MATH 5740), though specific applications are not presented in that class. See

my online notes on Section 2.12. Fixed Points and Contraction Mappings; notice

Theorem 2.44. It is also covered in Real Analysis 2 (MATH 5220) in the setting

of metric spaces where it is called the Banach Contraction Principle; see my on-

line notes for Real Analysis 2 on Section 10.3. The Banach Contraction Principle;

notice Theorem 10.3.B. It may also be covered in Applied Math 1 (MATH 5610).

See my online notes for Applied Math 1 (these are the version of the notes used

in the fall 1996 class) on Section 3.3. The Contraction Mapping Theorem; notice

Theorem 3.3.1.

Example 2.2.A. (Based on the “Illustration” on page 60.) The equation x3 +

4x2 − 10 = 0 has a unique root in [1, 2]. We rearrange this equation in such a way

https://faculty.etsu.edu/gardnerr/Func/notes/2-12.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/10-3.pdf
https://faculty.etsu.edu/gardnerr/Differential-Equations/DE-Waltman-notes/Waltman-3-3.pdf
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as to use Fixed-Point Iteration to solve the equation. Notice that x3 +4x2−10 = 0

is equivalent to x2(x + 4) = 10 or x2 = 10/(x + 4) or, since we are interested in a

positive solution, x =

(
10

x + 4

)1/2

. We can then solve this equation by finding a

fixed point of g4(x) =

(
10

x + 4

)1/2

=
√

10(x+4)−1/2 (notice that Burden, Faires, and

Burden consider five different approaches to this problem, some of which work and

some of which do not). Notice that g′4(x) =
√

10

(
−1

2

)
(x + 4)−3/2 =

−
√

10

2(x + 4)3/2

and for x ∈ [1, 2] we have |g′4(x)| =

∣∣∣∣∣ −
√

10

2(x + 4)3/2

∣∣∣∣∣ ≤
√

10

2(5)3/2 ≈ 0.1414. Therefore

|g′4(x)| < 0.15 for x ∈ [1, 2]. Also, g′4(x) < 0 for x ∈ [1, 2], so g4 is decreasing on [1, 2]

and the maximum of g4 on this interval is g4(1) =
√

10((1) + 4)−1/2 =
√

2 ≈ 1.4142

and the minimum is g4(2) =
√

10((2) + 4)−1/2 =
√

5/3 ≈ 1.2910. Therefore g(x) ∈

[1, 2] for x ∈ [1, 2], and the hypotheses of the Fixed-Point Theorem (Theorem 2.4)

are satisfied, so we know that the sequence {pn} converges to the unique fixed point

of g4 (and hence the unique solution to the original equation) in [1, 2]. Suppose we

take TOL = 0.00001 and p0 = 1.5 in the Fixed-Point Iteration algorithm. We get

the following values:

n pn |pn − pn−1|

0 1.5 -

1 1.348399725 0.151600275

2 1.367376372 0.018976647

3 1.364957015 0.002419357

4 1.365264748 0.000307733

5 1.365225594 0.000039154

6 1.365230576 0.000004983
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So after 6 iterations the Fixed-Point Iteration algorithm terminates (in Step 4)

and outputs 1.365230576, which we know is within 0.000005 < 0.00001 = TOL of

the actual value of the fixed point. Nine more iterations (for a total of 15) gives

the fixed point to 10 decimal places (see Burden, Faires, and Burden’s Table 2.2).
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