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Chapter 3. Interpolation and

Polynomial Approximation

3.1 Interpolation and the Lagrange Polynomial

Note. In this section we define the Lagrange polynomial of degree n that passes

through n + 1 given points and discuss its use for interpolation between the given

points.

Note. Recall from Section 1.1 that the set of functions continuous on interval

[a, b] is denoted C[a, b]; more generally, the set of functions continuous on set X

is denoted C(X). The set of functions which have a continuous nth derivative on

interval [a, b] is denoted Cn[a, b]; or more generally Cn(X). For details on these and

related classes of functions, see my supplemental online notes for Complex Analysis

1 (MATH 5510) on A Primer on Lipschitz Functions.

Definition. An algebraic polynomial or polynomial function is a function mapping

R → R of the form Pn(x) = anx
n + an−1x

n−1 + · + a2x
2 + a1x + a0, where n is

a nonnegative integer and a0, a1, . . . , an ∈ R with an 6= 0. The real constants

a0, a1, . . . , an are the coefficients of the polynomial and n is the degree.

Note. Polynomial functions involve elementary computation, only requiring multi-

plication and addition. So it would be computationally convenient to approximate

https://faculty.etsu.edu/gardnerr/5510/CSPACE.pdf
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more complicated functions (such as trigonometric or exponential functions) with

polynomial functions. The Weierstrass Approximation Theorem tells us that, on

certain kinds of sets, these approximations exist to any (nonzero) level accuracy

desired. More precisely, we have the following.

Theorem 3.1. Weierstrass Approximation Theorem.

Suppose f is defined and continuous on [a, b]. For each ε > 0, there exists a

polynomial P (x) with the property that

|f(x) = P (x)| < ε for all x ∈ [a, b].

Note. Anton R. Schep of the University of South Carolina has a nice, concise (2

page) and self-contained proof of the Weierstrass Approximation Theorem posted

online (accessed 3/14/2022). Dr. Schep’s proof is essentially the proof of Weier-

strass, which appeared originally in “Uber die analytische Darstellbarkeit sogenan-

nter willkürlicher Functionen einer reellen Veränderlichen,” Sitzungsberichte der

Kniglich Preuischen Akademie der Wissenschaften zu Berlin, 1885 (11). You might

http://people.math.sc.edu/schep/weierstrass.pdf
http://people.math.sc.edu/schep/weierstrass.pdf


3.1. Interpolation and the Lagrange Polynomial 3

see the Weierstrass Approximation Theorem in a senior-level class on Introduction

to Applied Math (Such as ETSU’s MATH 4027/5027) or a class on approximation

theory. It can also be covered in a class covering functional analysis. For example,

it may be covered in Real Analysis sequence (MATH 5210/5220) in Section 12.3.

The Stone-Weierstrass Theorem. The following is proved, which is a generalization

of Theorem 3.1.

The Stone-Weierstrass Approximation Theorem. Let X be a compact Haus-

dorff space. Suppose A is an algebra of continuous real-valued functions on X that

separates points in X and contains the constant functions. Then A is dense in the

space of continuous functions C(X).

Definition. Let (x0, y0) and (x1, y1) be two points in the Cartesian plane R2 where

x0 6= x1. Define the functions

L0(x) =
x− x1

x0 − x1
and L1(x) =

x− x0

x1 = x0
.

The linear Lagrange interpolating polynomial through points (x0, y0) and (x1, y1) is

P (x) = L0(x)f(x0) + L1(x)f(x1) =
x− x1

x0 − x1
f(x0) +

x− x0

x1 − x0
f(x1),

where y0 = f(x0) and y1 = f(x1).

Note. The linear Lagrange interpolating polynomial P is a first degree polynomial

function. When x = x0 we have

P (x0) =
(x0)− x1

x0 − x1
f(x0) +

(x0)− x0

x1 − x0
f(x1) = (1)f(x0) + (0)f(x1) = f(x0) = y0,

https://faculty.etsu.edu/gardnerr/5210/notes/12-3.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/12-3.pdf
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and

P (x1) =
(x1)− x1

x0 − x1
f(x0) +

(x1)− x0

x1 − x0
f(x1) = (0)f(x0) + (1)f(x1) = f(x1) = y1.

So, y = P (x) is a function whose graph is a line that passes through the points

(x0, y0) and (x1, y1). Of course we have an easier way of determining this line, but

we introduce this idea to motivate a generalization below.

Note. Burden, Faires, and Burden give the following as Theorem 3.2 (in which

they make a uniqueness claim based on the degree of the polynomial function), but

we state it here as a definition.

Definition. Let x0, x1, . . . , xn be n + 1 distinct numbers and f a function whose

values are given at these numbers. The nth Lagrange interpolating polynomial

through the n + 1 points (xi, f(xi)) for i = 0, 1, 2, . . . , n is

P (x) = f(x0)Ln,0(x) + f(x1)Ln,1(x) + · · ·+ f(xn)Ln,n(x) =
n∑

k=0

f(xk)Ln,k(x),

where for k = 0, 1, . . . , n,

Ln,k(x) =
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

=
n∏

i=0,i6=k

(x− xi)

(xk − xi)
.

We write Ln,k(x) as Lk(x) when there is not confusion as to its degree.

Note. For n = xk we have Ln,k(xk) =
n∏

i=0,i6=k

(xk − xi)

(xk − xi)
= 1, and for x = xj where
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j ∈ {0, 1, 2, . . . , n} but j 6= k, we have Ln,k(xj) =
n∏

i=0,i6=k

(xj − xi)

(xk − xi)
= 0 (since

(xj − xi) = 0 when i = j). So P (xi) = f(xi) for i = 0, 1, . . . , n, as desired. Figure

3.5 shows the graph of a “typical” Ln,k where n is even.

Example 3.1.2. (a) Use the numbers x0 = 2, x1 = 2.75, and x2 = 4 to find the

second Lagrange interpolating polynomial for f(x) = 1/x. (b) Use this polynomial

to approximate f(3) = 1/3.

Solution. (a) By definition, we have (skipping some arithmetic steps):

L0(x) =
(x− x1)(x− x2)

x0 − x1)(x0 − x2)
=

(x− 2.75)(x− 4)

(2− 2.75)(2− 4)
=

2

3
(x− 2.75)(x− 4),

L1(x) =
(x− x0)(x− x2)

x1 − x0)(x1 − x2)
=

(x− 2)(x− 4)

(2.75− 2)(2.75− 4)
= −16

15
(x− 2)(x− 4),

L2(x) =
(x− x0)(x− x1)

x2 − x0)(x2 − x1)
=

(x− 2)(x− 2.75)

(4− 2)(4− 2.75)
=

2

5
(x− 2)(x− 2.75).

Since f(x0) = f(2) = 1/2, f(x1) = f(2.75) = 4/11, and f(x2) = f(4) = 1/4,

then the second Lagrange interpolating polynomial based on these function values

is (simplifying and skipping arithmetic steps):

P (x) =
n∑

k=0

f(xk)Lk(x)
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=
1

3
(x− 2.75)(x− 4)− 64

165
(x− 2)(x− 4) +

1

10
(x− 2)(x− 2.75)

=
1

22
x2 − 35

88
x +

49

44
.

(b) To approximate f(3), we consider

P (3) =
1

22
(3)2 − 35

88
(3) +

49

44
=

9

22
− 105

88
+

49

44
=

28

88
≈ 0.32955 .

So this is a reasonable approximation to 1/3 (especially considering the fact that

we estimated with just a second degree polynomial; notice that we are interpolating

here since 3 lies within the range of the given function values, and it’s “close” to

one of the known function values, namely 2.75). Figure 3.6 gives a graph of f and

P together, showing the close agreement between the two near the data points. �

Note. Another application of Lagrange polynomials can be found in Elementary

Number Theory (MATH 3120). A Lagrange polynomial of degree n can be used

to generate the first n + 1 prime numbers. See my online notes on Section 22.

Formulas for Primes.

Note. We need the Generalized Rolle’s Theorem for the proof of the next theorem.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-22.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-22.pdf
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This is stated in Section 1.1, but we restate it here:

Theorem 1.10. Generalized Rolle’s Theorem.

Suppose f ∈ C[a, b] is n times differentiable on (a, b). If f(x) = 0 at the n + 1

distinct numbers a ≤ x0 < x1 < · · · < xn ≤ b, then a number c ∈ (x0, xn) and

hence in (a, b) exists with f (n)(c) = 0.

Note. We are now ready to relate a function f in Cn+1[a, b] to its nth Lagrange

polynomial P . In so doing, we introduce an “error term,” which allows us to gauge

the level of accuracy we have in approximating f with P on the interval [a, b].

Theorem 3.3. Suppose x0, x1, . . . , xn are distinct numbers in the interval [a, b] and

f ∈ Cn+1[a, b]. Then for each x in [a, b], a number ξ(x) between min{x0, x1, . . . , xn},

and the max{x0, x1, . . . , xn} and hence in (a, b), exists with

f(x) = P (x) +
f (n+1)(ξ(x))

(n + 1)!
(x− x0)(x− x1) · · · (x− xn),

where P (x) is the nth Lagrange interpolating polynomial.

Note. Theorem 3.3 may remind you of Taylor’s Theorem from Section 1.1, Calcu-

lus 2 (MATH 1920), or Analysis 1 (MATH 4217/5217). However, Taylor’s Theorem

involves matching the derivatives of function f with the derivatives of polynomial

P , and then considering a remainder term (instead of matching values of function

f , as we do with Lagrange interpolating polynomials). These are closely related

ideas, and in Exercise 3.1.22 you are to show that Taylor’s Theorem can be proved
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from Theorem 3.3. For the statement of Taylor’s Theorem and its use in Calculus

2, see my online notes on Section 10.9 Convergence of Taylor Series (notice Tay-

lor’s Theorem, Taylor’s Formula, and the Remainder Estimation Theorem). For

Analysis 1 material, see my online notes on Section 5.2. Some Mean Value The-

orems (notice Taylor’s Theorem and Taylors Theorem Alternative Version). The

statement of Taylor’s Theorem from Section 1.1 of Burden, Faires, and Burden is:

Theorem 1.14. Taylor’s Theorem.

Suppose f ∈ Cn[a, b], f (n+1) exists on [a, b], and x0 ∈ [a, b]. For every x ∈ [a, b]

there exists a number ξ(x) between x0 and x with f(x) = Pn(x) + Rn(x) where

Px(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

=
n∑

k=0

f (k)(x0)

k!
(x− x0)

k, and

Rn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x− x0)

n+1.

Example 3.1.3. We conclude this section with an illustration of the use of the

“error term” of Theorem 3.3 Determine the error term for the polynomial of Ex-

ample 3.1.2 and the maximum error when the polynomial is used to approximate

f(x) = 1/x for x ∈ [2, 4].

Solution. In Example 3.1.2 we found the second Lagrange interpolating polyno-

mial for f(x) = 1/x = x−1 based on the x-values 2, 2.75, and 4. By Theorem 3.3 we

would consider this an approximation on the interval [min{2, 2.75, 4}, max{2, 2.75, 4}] =

[2, 4]. To find how big the error term could be on this interval, we consider

f ′(x) = −x−2, f ′′(x) = 2x−3, and f ′′′(x) = −6x−4. The error term for the sec-

https://faculty.etsu.edu/gardnerr/1920/12/c10s9.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/5-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/5-2.pdf
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ond Lagrange interpolating polynomial is

f ′′′(ξx))

3!
(x− x0)(x− x1)(x− x2) = −(ξ(x))−4(x− 2)(x− 2.75)(x− 4)

where ξ(x) ∈ (a, b). Since (ξ(x))−4 reaches its maximum for ξ(x) ∈ [2, 4] when

ξ(x) = 2, then we have a bound on (ξ(x)−4 of 2−4 = 1/16. Now the polynomial

part of the error term is

g(x) = (x− 2)(x− 2.75)(x− 4) = x3 − 35

4
x2 +

49

2
x− 22,

and this has derivative g′(x) = 3x2−35

2
x+

49

2
=

1

2
(3x−7)(2x−7), so that the critical

points are x = 7/3, where g(7/3) = 25/108, and x = 7/2, where g(7/2) = −9/16.

We also check the endpoints of [a, b] = [2, 4] and find that g(2) = g(4) = 0 (since

the endpoints are x-values used in the determination of g), so that the maximum

of g on [2, 4] is 25/108 and the minimum is −9/16. However, we are interest in how

big the absolute value of g is (and how big the absolute value of the error term is),

we have have that |g(x)| ≤ 9/16 for x ∈ [2, 4]. So the error term itself is bounded

by ∣∣∣∣f ′′′(ξx))

3!
(x− x0)(x− x1)(x− x2)

∣∣∣∣ = | − (ξ(x))−4(x− 2)(x− 2.75)(x− 4)|

≤ 1

16

9

16
=

9

256
.

Since 9/256 ≈ 0.03516, then we see that the error made in approximating f(3) =

1/3 with 0.32955, as we did in Example 3.1.2, is |1/3 − 0.32955| ≈ 0.00378 <

0.03516, as expected. �
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