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Theorem 1.3

Theorem 1.3

Theorem 1.3. The series
∑
p∈P

1

p
diverges.

Proof. ASSUME that the series converges. Then there is some N such

that
∑

p < N
1

p
<

1

2
(by the definition of convergence of a series). Let

Q =
∏
p≤N

p be the product of all the primes less than or equal to N. For

n ∈ N, the number 1 + nQ is not divisible by a prime less than or equal to
N, since such a prime does divide Q (and hence divides nQ).

Now 1 + nQ
can be expressed as a product of prime numbers by the Fundamental
Theorem of Arithmetic and, since no prime less than or equal to N divides
1 + nQ, then the primes in the expression must be greater than N.
Consider

P =
∞∑

t=1

∑
p>N

1

p

t

<

∞∑
t=1

1

2t
= 1.
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Theorem 1.3

Theorem 1.3 (continued 1)

Proof (continued). Now if the expression of 1 + nQ as a product of

primes is 1 + nQ = qe1
1 qe2

2 · · · qer
r , then the expression

∑
p>N

1

p

t

contains

each 1/qei
i for each 1 ≤ i ≤ r (when p = qi > N and t = ei ). Next, the

expression
∞∑

t=1

∑
p>N

1

p

t

contains a term of the form

s

qe1
1 qe2

2 · · · qer
r

=
s

1 + nQ
where s ≥ 1 (by adding the previous terms and

getting a common denominator). So the left hand side of

P =
∞∑

t=1

∑
p>N

1

p

t

<

∞∑
t=1

1

2t
= 1

contains a term greater than or equal to 1/(1 + nQ) for each n ∈ N.
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Theorem 1.3

Theorem 1.3 (continued 2)

Proof (continued). Therefore

∞∑
n=1

1

1 + nQ
≤

∞∑
t=1

∑
p>N

1

p

t

< 1.

Since
∞∑

n=1

1

1 + nQ
is a bounded positive term series, then it converges. But

since 1 + nQ ≤ 2nQ then
K∑

n=1

1

1 + nQ
≥

K∑
n=1

1

2nQ
=

1

2Q

K∑
n=1

1

n
for any K ,

and since
K∑

n=1

1

n
→∞ as K →∞ (since the limit yields the harmonic

series), then
∞∑

n=1

1

1 + nQ
diverges by the Direct Comparison Test.
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Theorem 1.3

Theorem 1.3 (continued 3)

Theorem 1.3. The series
∑
p∈P

1

p
diverges.

Proof (continued). But this is a CONTRADICTION to the fact that the

series
∞∑

n=1

1

1 + nQ
converges. So the original assumption that

∑
p∈P

1

p

converges is false and hence this series diverges, as claimed.
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Theorem 1.3. Proof based on a lower bound

Theorem 1.3

Theorem 1.3. The series
∑
p∈P

1

p
diverges.

Proof. Fix N and let

N(N) = {n ∈ N | all prime factors of n are less than or equal to N}.
Then, as in the second proof of Euclid’s Infinite Primes Theorem
(Theorem 1.2) we have∑

n∈N(N)

1

p
=
∏
p≤N

(1 + p−1 + p−2 + p−3 + · · · ) =
∏
p≤N

(1− p−1)−1.

Now for n ≤ N, then n ∈ N(N), so
∑
n≤N

1

n
≤

∑
n∈N(N)

1

n
. By the inequality

in Note 1.1.A, we have

log N ≤ log(N + 1) ≤
∑

n∈N(N)

1

n
=
∏
p≤N

(1− p−1)−1. (1.5)
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Theorem 1.3. Proof based on a lower bound

Theorem 1.3 (continued 1)

Proof (continued). . . . By the inequality in Note 1.1.A, we have

log N ≤
∑

n∈N(N)

1

n
=
∏
p≤N

(1− p−1)−1. (1.5)

With f (v) = (1− v) exp(v + v2), we have f ′(v) = v(1− 2v) exp(v + v2)
and f ′(v) ≥ 0 for v ∈ [0, 1/2] then f is increasing on this interval. Since
f (0) = 1 then f (v) = (1− v) exp(v + v2) ≥ 1 for all v ∈ [0, 1/2]; that is,

1

1− v
≤ ev+v2

for v ∈ [0, 1/2]. For p prime, we have v = 1/p ≤ 1/2, so

this inequality gives us that∏
p≤N

(1− p−1)−1 ≤
∏
p≤N

exp(p−1 + p−2).

Combining this with Equation (1.5) and taking logarithms gives

log log N ≤
∑
p≤N

(p−1 + p−2).
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Theorem 1.3. Proof based on a lower bound

Theorem 1.3 (continued 2)

Theorem 1.3. The series
∑
p∈P

1

p
diverges.

Proof (continued). Since this is a positive term series then we have

log log N ≤
∑
p≤N

(p−1 + p−2) =
∑
p≤N

1

p
+
∑
p≤N

1

p2
.

As shown by Euler in his solution to the “Basel problem” in 1734,
∞∑

n=1

1

n2
=

π2

6
(or we know simply that the series converges since it is a

p-series with p = 2 > 1). That is,
∑
p≤N

1

p2
is bounded. Since

log log N →∞ as N →∞, then
∑
p≤N

1

p
→∞ as N →∞, as claimed.

() Number Theory April 17, 2022 9 / 17



Theorem 1.5. Euler Product Representation

Theorem 1.5

Theorem 1.5. Euler Product Representation.

For any real σ with σ > 1, ζ(σ) =
∏
p

(1− p−σ)−1.

Proof. For any σ > 1,

(1− 2−σ)ζ(σ) = (1− 2−σ)
∞∑

n=1

1

nσ
=

∞∑
n=1

1

nσ
−

∞∑
n=1

1

(2n)σ

=
∑

n odd

1

nσ
= 1 +

∑
n odd,n>2

1

nσ
,

where summing over all n odd where n > 2 is equivalent to summing over
all n such that the prime factors of n are greater than 2. That is, in the
final term we are summing over all n such that if prime p divides n, then
p > 2. We denote this as

(1− 2−σ)ζ(σ) = 1 +
∑

n odd,n>2

1

nσ
= 1 +

∑
p | n⇒p>2

1

nσ
.

() Number Theory April 17, 2022 10 / 17



Theorem 1.5. Euler Product Representation

Theorem 1.5

Theorem 1.5. Euler Product Representation.

For any real σ with σ > 1, ζ(σ) =
∏
p

(1− p−σ)−1.

Proof. For any σ > 1,

(1− 2−σ)ζ(σ) = (1− 2−σ)
∞∑

n=1

1

nσ
=

∞∑
n=1

1

nσ
−

∞∑
n=1

1

(2n)σ

=
∑

n odd

1

nσ
= 1 +

∑
n odd,n>2

1

nσ
,

where summing over all n odd where n > 2 is equivalent to summing over
all n such that the prime factors of n are greater than 2. That is, in the
final term we are summing over all n such that if prime p divides n, then
p > 2. We denote this as

(1− 2−σ)ζ(σ) = 1 +
∑

n odd,n>2

1

nσ
= 1 +

∑
p | n⇒p>2

1

nσ
.

() Number Theory April 17, 2022 10 / 17



Theorem 1.5. Euler Product Representation

Theorem 1.5 (continued 1)

Theorem 1.5. Euler Product Representation.

For any real σ with σ > 1, ζ(σ) =
∏
p

(1− p−σ)−1.

Proof (continued). Next consider,

(1− 2−σ)(1− 3−σ)ζ(σ) = (1− 3−σ)

1 +
∑

p | n⇒p>2

1

nσ


= 1 +

∑
p | n⇒p>2

1

nσ
− 3−σ −

∑
p | n⇒p>2

1

(3n)σ

= 1 +
∑

p | n,n 6=3,⇒p>2

1

nσ
−

∑
p | n⇒p>2

1

(3n)σ
= 1 +

∑
p | n⇒p>3

1

nσ
,

where in the final term we are summing over all n such that if prime p
divides n, then p > 3.
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Theorem 1.5. Euler Product Representation

Theorem 1.5 (continued 2)

Proof (continued). Inductively, we then have for primes 2, 3, 5, . . . , P
that

(1− 2−σ)(1− 3−σ)(1− 5−σ) · · · (1− P−σζ(σ) = 1 +
∑

p | n⇒p>P

1

nσ
,

where in the final term we are summing over all n such that if prime p
divides n, then p > P. Notice that if for n with only prime divisors p

where p > P, we must have n > P. Hence,
∞∑

n=P

1

nσ
≥

∑
p | n⇒p>P

1

nσ
. Since

∞∑
n=1

1

nσ
converges (it is a p-series with p = σ > 1), then for any given

ε > 0, we can make P sufficiently large so that
∞∑

n=P

1

nσ
< ε (from the

definition of convergent series).
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Theorem 1.5. Euler Product Representation

Theorem 1.5 (continued 3)

Theorem 1.5. Euler Product Representation.

For any real σ with σ > 1, ζ(σ) =
∏
p

(1− p−σ)−1.

Proof (continued). We now have

lim
P→∞

(1− 2−σ)(1− 3−σ) · · · (1− P−σ)ζ(σ) = lim
P→∞

( ∞∑
n=P

1

nσ

)
,

or
∏

p(1− p−σ)ζ(σ) = 1, or

ζ(σ) =
1∏

p(1− p−σ)
=
∏
p

(1− p−σ)−1,

as claimed.
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Theorem 1.3. Proof based on Euler product representation

Theorem 1.3

Theorem 1.3. The series
∑
p∈P

1

p
diverges.

Proof. We take the logarithm of the Euler product representation of the
zeta function and use the fact that the logarithm is continuous so that we
can pass limits in and out of the logarithm function (including infinite
products). So

log(ζ(σ)) = log

(∏
p

(1− p−σ)−1

)
= −

∑
p

(1− p−σ),

Now the Maclaurin series for log(1 + x) =
∞∑

m=1

(−1)m−1 xm

m
(valid for

−1 < x ≤ 1), so

log(1− p−σ) =
∞∑

m=1

(−1)m−1 (−p−σ)m

m
=

∞∑
m=1

−p−mσ

m
=

∞∑
m=1

−1

mpmσ
.
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Theorem 1.3. Proof based on Euler product representation

Theorem 1.3 (continued 1)

Proof (continued). So

log(ζ(σ)) = −
∑
p

log(1− p−σ) = −
∑
p

∞∑
m=1

−1

mpmσ

=
∑
p

1

pσ
+
∑
p

∞∑
m=2

1

mpmσ
, (1.10)

since the series converges absolutely and can be rearranged. For any prime
p, 1− 1/pσ ≥ 1/2 or 2 ≥ 1/(1− p−σ), so∑

p

∞∑
m=2

1

mpmσ
<

∑
p

∞∑
m=2

1

pmσ
replacing the

1

m
terms with 1

=
∑
p

1/p2σ

1− p−σ
summing the geometric series

with first term 1/p2σ with ratio p−σ
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Theorem 1.3. Proof based on Euler product representation

Theorem 1.3 (continued 2)

Proof (continued). . . .

∑
p

∞∑
m=2

1

mpmσ
<

∑
p

1/p2σ

1− p−σ

≤ 2
∑
p

1

p2σ
since 1/(1− p−σ) ≤ 2

≤ 2
∞∑

n=1

1

n2σ
= 2ζ(2σ) < 2ζ(2),

since ζ(s) is a strictly decreasing function of s for s > 1. The double sum∑
p

∞∑
m=2

1

mpmσ
is therefore bounded by 2ζ(2) for σ ≥ 1, and is bounded by

2 times the p-series
∑
p

1

p2σ
when σ > 1/2.
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Theorem 1.3. Proof based on Euler product representation

Theorem 1.3 (continued 3)

Theorem 1.3. The series
∑
p∈P

1

p
diverges.

Proof (continued). That is,
∑
p

∞∑
m=2

1

mpmσ
= O(1) (see the Introduction

for the information on rates of growth). Therefore, by equation (1.10)

log ζ(σ) =
∑
p

1

pσ
+ O(1).

Now as σ → 1+ we have ζ(σ) →∞ (see Figure 1.2, for example), so we

must have lim
σ→1+

∑
p

1

pσ
= ∞. That is,

∑
p

1

p
diverges to infinity, as

claimed.
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