The Prime Number Theorem

Section 1.2. Arithmetic Functions—Proofs of Theorems

()

Table of contents

Proposition 1.2.1. Suppose that n > 1, with prime factorization $n = \prod_{j=1}^{m} p_j^{k_j}$. Then

$$\tau(n) = \prod_{j=1}^{m} (k_j + 1), \ \omega(n) = m, \ \Omega(n) = \sum_{j=1}^{m} k_j.$$

Proof. The expressions for $\omega(n)$ and $\Omega(n)$ are just symbolic representations the definition of each. Divisors of $n = \prod_{j=1}^{m} p_j^{k_j}$ are of the

form $\prod_{j=1}^{m} p_j^{r_j}$ where for each j, $0 \le r_j \le k_j$. To count the factors, we notice that there are $k_j + 1$ possible values for k_j (namely, $0, 1, \ldots, k_j$) and this holds for each $1 \le j \le m$.

Proposition 1.2.1. Suppose that n > 1, with prime factorization $n = \prod_{j=1}^{m} p_j^{k_j}$. Then

$$\tau(n) = \prod_{j=1}^{m} (k_j + 1), \ \omega(n) = m, \ \Omega(n) = \sum_{j=1}^{m} k_j.$$

Proof. The expressions for $\omega(n)$ and $\Omega(n)$ are just symbolic representations the definition of each. Divisors of $n = \prod_{j=1}^{m} p_j^{k_j}$ are of the

form $\prod_{j=1}^{m} p_j^{r_j}$ where for each j, $0 \le r_j \le k_j$. To count the factors, we notice that there are $k_j + 1$ possible values for k_j (namely, $0, 1, \ldots, k_j$) and this holds for each $1 \le j \le m$.

Proposition 1.2.1 (continued)

Proposition 1.2.1. Suppose that n > 1, with prime factorization $n = \prod_{j=1}^{m} p_j^{k_j}$. Then

$$\tau(n) = \prod_{j=1}^{m} (k_j + 1), \ \omega(n) = m, \ \Omega(n) = \sum_{j=1}^{m} k_j.$$

Proof (continued). So there are $(k_1 + 1)$ choices for k_1 , $(k_2 + 1)$ choices for k_2 , ..., $(k_m + 1)$ choices for k_m . By The Fundamental Counting Principle (see Section 2.2. Counting Methods in my online notes for Foundations of Probability and Statistics—Calculus Based [MATH 2250] or Section 1.1. The Fundamental Counting Principle in my online notes for Applied Combinatorics and Problem Solving [MATH 3340]) this means that there are $\prod_{i=1}^{m} (k_i + 1)$ possible different divisors of n, as claimed.

Proposition 1.2.2. Write $S_{\tau}(x) = \sum_{n \leq x} \tau(n)$ and $S_{\omega}(x) = \sum_{n \leq x} \omega(n)$. Then

$$S_{ au}(x) = \sum_{j \leq x} \left\lfloor rac{x}{j}
ight
ceil \ ext{ and } S_{\omega}(x) = \sum_{p \in P[x]} \left\lfloor rac{x}{p}
ight
ceil.$$

Proof. Since $\tau(n)$ is the number of divisors of *n*, then we have

 $\tau(n) = |\{j \mid 1 \le j \le n, j \mid n\}| = |\{(j, n) \mid 1 \le j \le n, j \mid n\}|.$

Let $x \in \mathbb{R}$ (where we may as well take $x \ge 1$). Fix j where $1 \le j \le x$. Then $|\{(j, n) \mid j \mid n\}| = |\{(j, n) \mid n = rj\}| = |\{r \mid n = rj\}| = |\{r \mid rj \le x\}|$. The number of multiples of j that are less than or equal to x is [x/j]. That is, $|\{r \mid rj \le x\}| = [x/j]$. Summing over all $1 \le j \le x$, we get the total number of divisors of positive integers less than or equal to x:

$$S_{\tau}(x) = \sum_{n \leq x} \tau(n) = \sum_{j \leq x} \left\lfloor \frac{x}{j} \right\rfloor$$
, as claimed.

Proposition 1.2.2. Write $S_{\tau}(x) = \sum_{n \leq x} \tau(n)$ and $S_{\omega}(x) = \sum_{n \leq x} \omega(n)$. Then

Proof. Since $\tau(n)$ is the number of divisors of *n*, then we have

$$\tau(n) = |\{j \mid 1 \le j \le n, j \mid n\}| = |\{(j, n) \mid 1 \le j \le n, j \mid n\}|.$$

Let $x \in \mathbb{R}$ (where we may as well take $x \ge 1$). Fix j where $1 \le j \le x$. Then $|\{(j,n) \mid j \mid n\}| = |\{(j,n) \mid n = rj\}| = |\{r \mid n = rj\}| = |\{r \mid rj \le x\}|$. The number of multiples of j that are less than or equal to x is [x/j]. That is, $|\{r \mid rj \le x\}| = [x/j]$. Summing over all $1 \le j \le x$, we get the total number of divisors of positive integers less than or equal to x:

$$S_{\tau}(x) = \sum_{n \leq x} \tau(n) = \sum_{j \leq x} \left\lfloor \frac{x}{j} \right\rfloor$$
, as claimed.

Proposition 1.2.2 (continued)

Proposition 1.2.2. Write $S_{\tau}(x) = \sum_{n \leq x} \tau(n)$ and $S_{\omega}(x) = \sum_{n \leq x} \omega(n)$. Then

$$S_{ au}(x) = \sum_{j \leq x} \left[rac{x}{j}
ight] \quad ext{and} \quad S_{\omega}(x) = \sum_{p \in P[x]} \left[rac{x}{p}
ight].$$

Proof (continued). Since $\omega(n)$ is the number of prime divisors of n, then we have $\omega(n) = |\{p \mid p \text{ is prime}, p \mid n\}| = |\{(p, n) \mid p \text{ is prime}, p \mid n\}|$. Let $x \in \mathbb{R}$ (where we may as well take $x \ge 1$). Fix p prime where $1 \le p \le x$. Then $|\{(p, n) \mid p \mid n\}| = |\{(p, n) \mid p \text{ is prime}, n = rp\}| = |\{r \mid n = rp, p \text{ is prime}\}| = |\{r \mid rp \le x, p \text{ is prime}\}|$. The number of multiples of pthat are less than or equal to x is [x/p]. That is, $|\{r \mid rp \le x\}| = [x/p]$. Summing over all prime $p \le x$, we get the total number of prime divisors of positive integers less than or equal to x:

$$S_{\omega}(x) = \sum_{n \leq x} \omega(n) = \sum_{p \in P[x]} \left\lfloor \frac{x}{p} \right\rfloor$$
, as claimed.