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Chapter 1. Foundations

Note. The goal of this course is, for π(x) and the number of prime numbers less

than or equal to x, to find an (asymptotic) approximation of π(x). We vaguely use

the term “arithmetic function” to indicate a sequence defined using some number

theoretic properties. For example, with uP as the arithmetic function

uP (n) =

 1 if n is prime

0 otherwise,

we can express π(x) and
∑
n≤x

uP (x). In this chapter, we will consider Abel summa-

tion and integral estimation to approximate such a sum.

Note. A somewhat detailed history of prime numbers and the Prime Number

Theorem can be found in my online notes for Elementary Number Theory (MATH

3120) on Supplement. The Prime Number Theorem—History, so we only mention

here a brief outline of the history. In the early 1850s, Russian mathematician

Pafnuty Chebyshev (May 16, 1821–December 8, 1894) introduced the function

θ(x) =
∑

p∈P [x] log p, where P [x] denotes the set of primes not greater than x) and

proved that lim
x→∞

θ(x)

x
= 1 is equivalent to the Prime Number Theorem. He was

able to show that π(x) is close to x/ log x in the sense that

0.92129 ≤ lim infx→∞
π(x)

x/ log x
≤ 1 ≤ lim supx→∞

π(x)

x/ log x
≤ 1.10555.

See page 606 of J. L. Goldstein’s “A History of the Prime Number Theorem,” The

American Mathematical Monthly, 80(6), 599–615 (1973); this paper is available

through JSTOR (accessed 3/31/2022).

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
https://www.jstor.org/stable/2319162
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Note/Definition. For an arithmetic function a(n), we will have a Dirichlet series

as a series of the form
∞∑

n=1

a(n)

ns
, where s is a complex variable. For example, with

a(n) = 1 this defines the Riemann zeta function (for Re(s) > 1). We will use (in

Chapter 3) the nature of a Dirichlet series to get information about the partial

sums of arithmetic function a(n).

Section 1.1. Counting Prime Numbers

Note. In this section we give a brief history of the Prime Number Theorem, up

through the “elementary proof” of Selberg and Erődos in 1949. We consider three

functions as candidate asymptotic estimates of π(x) and claim that, by our method

of estimation, each is equivalent to the other as an estimate.

Note. Our first result concerning prime numbers is due to Euclid, and appears in

his Elements of Geometry as Proposition 20 in Book IX where it is stated as “Prime

numbers are more than any assigned multitude of prime numbers.” Euclid’s proof

is online in David Joyce’s online version of Euclid’s Elements (accessed 3/30/2022).

We now state and prove the result (though we require some results from Elementary

Number Theory [MATH 3120]).

Proposition 1.1.1. There are infinitely many prime numbers.

Note. In the proof of Proposition 1.1.1, we see that there must be some prime

divisor of p1p2 · · · pn + 1 different from p1, p2, . . . , pn (in increasing order). So there

https://mathcs.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html
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must be some prime pn+1 strictly between pn and p1p2 · · · pn +1. In a related result,

we have:

Exercise 1.1.3. Let the primes be listed in order as p1, p2, . . .. Then

pn < 22n−1

for each n ∈ N. From this we have π(x) ≥ log log x

log 2
.

We now turn our attention to a more precise approximation of π(x).

Note. Based on tables of primes, three functions were proposed as estimates of

π(x) (again, see my online notes for Elementary Number Theory (MATH 3120)

on Supplement. The Prime Number Theorem—History for more historical details).

We consider x/ log x, x/(log x− 1), and li(x) where li(x) is the logarithmic integral

(also denoted Li(x)):

li(x) =

∫ x

2

1

log t
dt.

As circumstantial evidence for these estimates, consider the following table from

page 3:

n π(n) n/ log n n/(log n− 1) li(n)

1,000 168 145 169 177

10,000 1,229 1,086 1,218 1,246

50,000 5,133 4,621 5,092 5,166

100,000 9,592 8,686 9,512 9,630

500,000 41,538 38,103 41,246 41,607

1,000,000 78,498 72,382 78,031 78,628

10,000,000 664,579 620,421 661,459 664,918

A graph of π(x), alongside a graphs of x/ log x, li(x), and x/(log x− 1.08366) is in

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Supplement-PNT-History.pdf
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the following image from an MAA website on “The Origin of the Prime Number

Theorem: A Primary Source Project for Number Theory Students:

Notice that, over this range of input values, x/ log x are the weakest of the approx-

imating functions.

Definition. Given two functions f and g defined for positive real numbers, we

denote the limit

lim
x→0

f(x)

g(x)
= 1

as f(x)
∑

g(x) as x →∞.

Note. In Section 1.5. The Function li(x), we will see that

x

log x
∼ x

log x− 1
∼ li(x) as x →∞.

Since ∼ is an equivalence relation (see Exercise 1.1.A), then we can take as the

Prime Number Theorem the condition π(x) ∼ f(x) for f(x) equal to any of
x

log x
,

x

log x− 1
, or li(x).

https://www.maa.org/press/periodicals/convergence/the-origin-of-the-prime-number-theorem-a-primary-source-project-for-number-theory-students
https://www.maa.org/press/periodicals/convergence/the-origin-of-the-prime-number-theorem-a-primary-source-project-for-number-theory-students
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Note. The first step in the direction of analytic number theory was taken by

Leonhard Euler (April 15, 1707–September 18, 1783) in 1737 when he proved (with

some lack of rigor, by modern standards) that

ζ(s) =
∞∑

n=1

1

ns
=

∏
p prime

1

1− p−s
for s > 1.

Around 1800, Adrien-Marie Legendre (September 18, 1752–January 9, 1833) and

Carl Friedrich Gauss (April 30, 1777–February 23, 1855) studied tables of primes

and conjectured about the asymptotic behavior of π(x). Legendre proposed that

π(x) ∼ x/(log x − 1.08366) and Gauss proposed (but never published) that π ∼

li(x). In the early 1850s, Pafnuty Chebyshev (May 16, 1821–December 8, 1894)

presented his bound on
π(x)

x/ log x
, as stated in the introduction to this chapter. The

Bernhard Riemann enters.

Note. Bernhard Riemann (September 17, 1826–July 20, 1866) in a 9-page arti-

cle “On the Number of Primes Less Than a Given Magnitude” (published in the

November 1859 issue of Monatsberichte der Königlich Preußischen Akademie der

Wissenschaften zu Berlin) formally introduced the zeta function as a function of

a complex variable. This set the stage for the proof of the Prime Number The-

orem (and laid the foundations of research that continues today). A translation

appears in the appendix of Harold Edwards’ Riemann’s Zeta Function, Academic

Press 1974 (reprinted by Dover Publications in 2001), and a translation is online

on the Claymath.org website (accessed 3/6/2022). Riemann’s definition of ζ(s) for

http://www.claymath.org/sites/default/files/ezeta.pdf
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Re(z) > 1 is the same as Euler’s for s > 1:

ζ(s) =
∞∑

n=1

1

ns
=

∏
p prime

1

1− p−s
for Re(s) > 1.

Riemann extended ζ(s) to the rest complex plane, except s = 1. The zeta function

is the meromorphic on C with a simple pole at s = 1 only. This is established in

Complex Analysis 2 (MATH 5520) in VII.8. The Riemann Zeta Function (though

the class traditionally does not reach this point). The location of the “nontrivial”

zeros of ζ(s) are relevant to the Prime Number Theorem. If the zeros are located in

real part less than one, then the Prime Number Theorem will follow; see page 156 of

John Derbyshire’s Prime Obsession: Bernhard Riemann and the Greatest Unsolved

Problem in Mathematics, Washington, DC: Joseph Henry Press (2003) “Riemann’s

1859 paper gave an exact expression for the error term. That expression. . . involves

all the non-trivial zeros of the zeta function, so the key to understanding the error

term is hidden in among the zeros somehow.” This quote is from page 234 of

Derbyshire. Riemann did not show that the nontrivial zeros have real part less

than one, and so he was unable to prove the Prime Number Theorem.

Note. In 1896, Jacques Hadamard (December 8, 1865–October 17, 1963) and

Charles de la Vallée Poussin (August 14, 1866–March 2, 1962) independently proved

the Prime Number Theorem by showing that the nontrivial zeros of the zeta func-

tion have real part less than one. So the proof is heavily dependent on the theory

of functions of a complex variable. It took another 50 years for a proof to be

given that did not depend on complex function theory. In 1949, Alte Selberg (June

14, 1917–August 6, 2007) and Paul Erdős (March 26, 1913–September 20, 1996)

https://faculty.etsu.edu/gardnerr/5510/notes/VII-8.pdf
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gave an “elementary” proof of the Prime Number Theorem; that is, they gave a

proof that did not use complex function theory. This is the standard use of the

terminology “elementary” in this setting; it is not meant to imply that the proof

is simple!
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